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ABSTRACT
One of the key challenges in pharmacoepidemiological studies is that of uncontrolled confounding, which occurs when con-
founders are poorly measured, unmeasured or unknown. Self-controlled designs can help address this issue, as their key com-
parison is not between people, but periods of time within the same person. This controls for all time-stable confounders (genetics) 
and in the absence of time-varying confounding negates the need for an external control group. However, these benefits come 
at the cost of strong assumptions, not all of which are verifiable. This review briefly introduces the reader to different types of 
self-controlled study designs, their terminology and highlights key publications through an annotated reference list. We include 
a practical description of how these designs can be implemented and visualised using recent examples, and finish by discussing 
recent developments. We hope this review will serve as a starting point for researchers looking to apply self-controlled designs 
in their own work.

1   |   Introduction

Most analytical studies in pharmacoepidemiology compare the 
risk of an outcome between individuals who are and are not ex-
posed to a certain medication, typically using either a cohort or 
a case–control design [1]. In contrast to cohort and case–control 
studies, self-controlled study designs compare different time pe-
riods within the same person. This means that individuals act as 
their own controls and all confounders that do not vary over the 
observation period (e.g. genetic factors) are implicitly controlled 
for, irrespective of whether or not they are measured or known. 
Self-controlled designs also negate the need to identify or col-
lect data on a separate control group, and can be more statisti-
cally efficient, if the resources saved on not extracting data for 

non-cases enables the inclusion of more cases [2, 3]. In this re-
view, we provide a brief introduction to different self-controlled 
study designs for pharmacoepidemiologists. Our aim is to com-
plement existing high-quality reviews [4, 5] by integrating new 
terminology and visualisation standards [6, 7], highlighting 
recent developments, and providing a roadmap of existing re-
sources through an annotated reference list.

2   |   Key Features of Self-Controlled Studies

All self-controlled studies share some key features, although 
the terminology used to describe these has historically differed 
between the different designs. Table  1 summarises relevant 
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terminology, following a recent effort to harmonise terminol-
ogy which also proposed the term Self-controlled Crossover 
Observational PharmacoEpidemiologic (SCOPE) studies to refer 
to studies using self-controlled designs [6].

2.1   |   Study Design and Analysis

All self-controlled designs have one or more anchors; points in 
time relative to which all other design features are defined. Self-
controlled designs then divide the observation time into periods 
of hypothesised increased risk ( focal windows) and comparison 
periods (referent windows) relative to the anchor(s). Additional 
time periods, transition windows, that should not be considered 
as part of either a focal or the referent window, may also be de-
fined (Table 1). Taken together, these windows are sometimes re-
ferred to as observation windows or the observation period. This 
should be differentiated from the study period, which defines the 
calendar time period during which eligible cases are identified. 
For example, when studying the effect of a vaccine given during 
the second year of life, the observation period for each individual 
is the second year of life, whereas the study period could span 
several years to include a sufficient number of cases.

Usually, the observation period should include time when it is 
possible for both the outcome and exposure to occur. However, 
in some instances it might be valid to sample referent windows 
during which the outcome (in outcome-anchored studies) or 
the exposure (in exposure-anchored studies) could not occur 
[2]. As the aim of the referent window is to provide an estimate 

of the ‘usual’ frequency of either the exposure or outcome, non-
risk time periods can be used to estimate this provided that 
they are representative of periods of time during which the 
relevant event could occur [8, 9]. For example, in an exposure-
anchored study of a vaccine and an adverse event, researchers 
may choose to start the study period before the roll-out of the 
vaccine. Eligibility criteria in self-controlled designs are often 
applied either at the anchor date, or at the start of the study 
period if they are nested within a larger cohort. The decision 
of when to apply eligibility criteria may be taken for pragmatic 
rather than scientific reasons: when conducting primary data 
collection based on the sampling of cases, assessing eligibility 
at the outcome date may be easy to implement. However, when 
adding a self-controlled case series to an ongoing cohort study, 
assessing eligibility at the start of the study period may allow 
researchers to use the same data cut for both analyses.

The final feature which all self-controlled studies share is that 
they condition on the individual during the analysis: that is, they 
are analysed in strata defined by the individual such as by using 
conditional Poisson or logistic regression. This is of key impor-
tance: it is what enables the control of time-stable confounders.

2.2   |   Advantages and Assumptions

The key advantage of self-controlled designs compared to 
between-person designs is the control of time-stable confound-
ers. Removing the need for a separate unexposed control group is 
also useful in scenarios where a suitable control group is difficult 
to identify, for example, due to large differences between exposed 
and unexposed individuals or vaccination campaigns where the 
exposure quickly becomes universal. In cases where primary 
data collection is done, collecting data on only cases is also likely 
to be quicker and cheaper than collecting additional data on a 
control group. Researchers do still need to be aware of the risk of 
time-varying confounders such as age and seasonality, which can 
be minimised through the use of concurrent controls or statisti-
cal adjustment [2, 3, 10–12]. Methods for handling time-varying 
confounders are elaborated on in the design-specific sections.

Self-controlled designs also share some important assumptions. 
First, they generally require that exposures should be transient. 
An important nuance here is that permanent changes in expo-
sure status can still be studied as long as the effect of the expo-
sure on the outcome is transient [2], which may be the case even 
if the exposure itself is permanent. For example, vaccination is a 
permanent change in exposure status (from unvaccinated to vac-
cinated), but it is only expected to increase the risk of side effects 
(like injection site pain) for a short period directly after receipt 
of the vaccine. The underlying hypothesis should be that the ex-
posure affects risk of the outcome in the short-term. Although 
there are examples of self-controlled studies evaluating long-
term medication use (so-called persistent or chronic use), for 
example, the effect of antipsychotic medications on fracture risk 
[13], caution is warranted and this is discussed further below.

Second, self-controlled designs require that the timing of the 
outcome of interest is correctly identified, and they are there-
fore best suited to study acute events or events with abrupt onset 
recorded with a precise date. The precision of the outcome 

Summary

•	 Self-controlled study designs generally include only 
individuals who experience the outcome, and the key 
contrast involves a comparison of a time period of 
hypothesised increased risk of exposure or outcome 
(focal window) to one or more reference time periods 
(referent window) within the same person.

•	 Self-controlled study designs can be outcome-
anchored, in which the frequency of exposure is 
compared between focal and referent windows de-
fined relative to an outcome event (such as the case-
crossover study); or exposure-anchored, in which 
frequency of the outcome is compared between focal 
and referent windows defined relative to an exposure 
(such as the self-controlled case series).

•	 The key advantage of self-controlled studies is that po-
tential confounding factors which are stable across the 
focal and referent windows are implicitly controlled 
for, irrespective of whether or not they are known 
or measured. They also allow for more efficient data 
collection, and computational efficiency, compared to 
traditional between-person study designs.

•	 All self-controlled designs rely on strong assumptions, 
which need to be carefully evaluated. They are par-
ticularly useful for research questions where there is 
a transient exposure, an acute outcome and either un-
measured confounding is a key concern or a suitable 
control group is difficult to define.
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measurement should match the research question; if you are in-
terested in whether an outcome occurs minutes after exposure 
then you must be able to identify the exact minute the outcome 
occurred [2]. Selection bias may be introduced if the probabil-
ity of experiencing an event during a focal window compared 
to a reference window differs between included and excluded 
exposed cases. For example, if adverse events occurring shortly 
after vaccination are more likely to be recorded than those 

occurring before or longer after, individuals with events in 
focal windows are more likely to be included than those with 
events at other moments. This would result in an overestimation 
of the association between vaccination and the adverse event. 
Measurement error in either the exposure or outcome timing is 
a threat to the validity of a self-controlled analysis, as it means 
that focal and referent windows may be specified incorrectly 
and events attributed to the wrong time window.

TABLE 1    |    Key features of self-controlled studies.

Key feature Definition Alternative names

Anchor A point in time relative to which all design features in a self-controlled study 
are defined. The anchor is either the exposure or the outcome depending on 
the type of self-controlled design. A study can have more than one anchor, 

for example if there are multiple outcomes within the same person.

Exposure-anchored Self-controlled studies in which key design features are defined 
relative to the timing of one or more exposure dates.

Outcome-anchored Self-controlled studies in which key design features are defined 
relative to the timing of one or more outcome dates.

Observation period Calendar time period during which individual cases are observed. In 
general, this will include time when it is possible for both the outcome 
and exposure to occur. The observation period can include time where 

the outcome (outcome-anchored) or exposure (exposure-anchored) 
cannot occur if the usual risk in this period is representative of the 
usual risk in the period where the outcome or exposure is present.

Observation windows

Study period Calendar time period during which eligible cases will be identified. The 
study period does not need to be equal to the observation period and can 
span multiple years to ensure sufficient cases are included in the study.

Focal window Period of time, within a person, during which the risk of either an 
outcome or exposure is hypothesised to be heightened. The focal 
window should be defined based on the underlying hypothesised 
biological or pharmacological effects that are being studied, for 

example, reflecting varying lengths of exposure to a particular drug.

Risk window/period
Hazard period

Referent window Period of time, within a person, during which the risk of either an 
outcome or exposure is hypothesised to reflect the usual incidence.

Control window/
period

Baseline period

Transition window Period of time that should not be considered as part of either a focal or 
the referent window because the risk of the outcome or exposure does not 
reflect either the hypothesised increased risk or the usual incidence. This 

includes lingering effects of the exposure on the outcome (wash-out), a delay 
between administration of exposure and the start of its effects (induction), 
a delay between an outcome and subsequent exposure (pre-exposure) and 
periods of lower risk due to data quality or healthcare system factors (lag).

Pre-exposure 
window/period

Wash-out window
Induction window

Lag window

Covariate 
assessment window

Period of time, prior to the earliest referent or focal window, during which 
baseline covariates are assessed. In self-controlled designs, eligibility criteria 

are typically applied either at the anchor date, or at the start of the study 
period if they are nested within a larger cohort. A minimum covariate 
assessment window (for example 1 year) may be added as an eligibility 
criteria. Time-varying covariates (e.g. age, calendar time) are assessed 

throughout the study period in exposure-anchored designs. Follow-up time 
is then split into segments defined by periods (e.g. months) of this covariate. 
In theory, other time-varying covariates could be adjusted for in the same 
way, but caution is needed to ensure that the time-varying does not also 

act as a mediator, in which case adjustment would be inappropriate.

Note: As the vocabulary for self-controlled designs has evolved naturally over the years and attempts to unify inconsistencies are relatively recent [6], a column with 
alternative names used in literature has been included.
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Finally, because self-controlled designs are case-based, they 
do not directly estimate absolute risks. These can be indirectly 
estimated, provided there is some denominator information 
available; alternatively published formulas based on relative 
measures of effect can be used to calculate an attributable frac-
tion [14, 15]. There is limited guidance on how to calculate ab-
solute measures of effect for self-controlled studies, and this 
should be done with particular caution if denominator informa-
tion is derived from external sources [16].

2.3   |   Related Study Designs

There are a number of related designs that are not all consid-
ered self-controlled study designs, either because they still rely 
on comparisons between individuals to make inferences despite 
including only cases, or because their aim is signal detection 
[17]. These include the sequence symmetry analysis developed 
for medication signal detection [18], the self-controlled tree scan 
statistic [19] and the case-referent method developed for vaccine 
safety assessments [20, 21].

3   |   Outcome-Anchored Self-Controlled Designs

3.1   |   Case-Crossover Design

The case-crossover (CCO) design was developed as an alterna-
tive to the case–control design [22]. The design uses the timing 
of the exposure relative to the outcome to make inferences [2]: 
intuitively, this can be thought of as evaluating how likely it is 
that, given that the outcome has occurred at this specific point in 
time, the exposure happened just before it? The CCO is outcome-
anchored, with a focal window just before the outcome and one 
or more referent window at earlier time points. The probability of 
exposure is then compared during focal and referent windows to 
estimate an odds ratio, using either conditional logistic regression 
or the Mantel–Haenszel method stratified on the individual. In 
general, the CCO's efficiency increases with increasing number 
of referent windows [23], although there is a trade-off, as a greater 
number of referent windows risks exacerbating bias due to time-
varying confounding if referent windows get further away from 
the anchor [2]. Researchers should be aware that using condi-
tional logistic regression can introduce bias if more than one con-
trol period is used due to an issue called within-subject exposure 
dependency (see [24] for more details). This could be removed by 
using the Mantel–Haenszel method [25]. An example of a CCO is 
provided in Box 1, and the design is illustrated in Figure 1.

A core assumption of the CCO is that the probability of expo-
sure in the referent window represents that in the focal window 
under the null hypothesis of no exposure effect [11]. This has 
some important implications. Firstly, it implies that there should 
be no strong population-level time trends in the exposure. If the 
probability of exposure increases over time, exposure would be 
more likely in focal than reference windows thus biasing the 
effect estimates upwards. A bi-directional CCO using referent 
windows both before and after the outcome can control potential 
exposure time trends, but this requires the additional assumption 
that the outcome should not affect future exposure probability 
[2, 27]. Secondly, it means that results from a CCO will be biased 

if the focal and referent window are not comparable, for example, 
that is, there should be no time-varying confounding. Such time-
varying confounders can be adjusted, assuming they are mea-
sured during both referent and focal windows [9], and the timing 
of the exposure and confounder do not completely overlap.

Pharmacoepidemiologists should be aware of a number of addi-
tional important considerations when interpreting results from a 
CCO. Firstly, there is a risk of ‘carry-over’ effects if the effect of a 
medication is not transient, blurring the effects between the focal 
and referent window. A transition (wash-out) window is typically 
placed between the referent and focal windows to account for this 
[28]. Upward bias might also be introduced when studying drugs 
that should be taken chronically (‘persistent use’) in a CCO be-
cause it only includes individuals with discordant exposure sta-
tus. In a theoretical situation where all people use the medication 
persistently, the only individuals with such discordant exposure 
would be those who have the side effect shortly after treatment 
initiation and are thus exposed in the focal window but unex-
posed in the referent window (because drug use should be contin-
uous in the absence of the side effect) [29, 30]. In the real-world, 
there will always be both transient and persistent users, and the 
mix of these subpopulations can drive an upward bias. We refer 
readers to [30] for a more in-depth discussion of persistent user 
bias. Recent work suggests using referent time points instead of 
windows may alleviate this issue, allowing the study of persistent 
use in a CCO [31]. Finally, as in other study designs, these de-
signs are also at risk of selection bias if the exposure distribution 
amongst included cases differs from that amongst all cases in the 
target population [9] and from bias due to misclassification.

3.2   |   Variants and Extensions 
of the Case-Crossover Design

The case-time-control (CTC) study is an extension of the CCO 
study developed to account for potential exposure time trends 
caused by for example progression of underlying conditions or 
changes in prescription practices over time [12]. The CTC uses 
a control group of individuals without the outcome to quan-
tify, and correct for, any time trend in the exposure. Briefly, 
each case is matched to a control, assigned the event date of 
the case, and a referent and focal windows are defined relative 
to the assigned event date. The odds of exposure in focal and 
referent window amongst controls is then compared to calcu-
late a ‘trends odds ratio’. By dividing the CCO odds ratio with 
the trends odds ratio estimated in controls, an odds ratio can 
be derived adjusted for time trends. There is also some evi-
dence suggesting that CTC may be less biased than the CCO 
when studying persistent users, although incorporation of a 
control group does not appear completely satisfactory in re-
solving this issue [30]. An important assumption of the CTC 
design is that the exposure time trend is the same amongst 
cases and controls: this may not hold true if cases are gener-
ally sicker and therefore more likely to use medication in the 
time period leading up to their event. Researchers can match 
on person-level characteristics, including age, sex and disease 
risk score to make the control group, and thus ideally time 
trends, more similar to cases  [32]. An extension of the CTC, 
the case–case-time control design, involves using future cases 
as controls [33]. This has several proposed benefits: firstly, it 
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avoids sampling an external control group of non-cases, and 
secondly, it might provide a more comparable estimate of ex-
posure time trends, as future cases may be more similar to 
current cases than non-cases. An example of the CTC is pro-
vided in Box 2, and the design is illustrated in Figure 2.

The CCO can also incorporate active comparators, which can 
help address concerns around time-varying confounding [10] 
and protopathic (reverse causality) bias [35]. Finally, the CCO 
design has been extended to study drug–drug interactions with 
a six-parameter model that allows the order of drug initiation to 
be differentiated: a detailed description of how to use the design 
for this purpose is provided by Bykov et al. [29].

4   |   Exposure-Anchored Self-Controlled Designs

4.1   |   Self-Controlled Case Series

The self-controlled case series (SCCS) was developed to inves-
tigate adverse events following vaccination [36], although it 
has since been applied more widely [37] to study the safety of 
medicines, devices and medical procedures. The SCCS aims to 
answer an underlying research question about the timing of the 
outcome relative to the exposure: given that the exposure takes 
place at a certain point in time, how likely is it that the outcome 
occurs shortly after? [3].

The SCCS defines referent and focal windows relative to the ex-
posure within the pre-specified observation period. Typically, 
all time during the observation period outside the focal window 
is used as the referent window. In other words, the observa-
tion period should not end when the outcome occurs, making 
the SCCS a bi-directional design [4]. The length of the observa-
tion period in an SCCS can vary from relatively short to several 
years, and the difference in time contributed by the focal and 
referent windows is accounted for by including the length of the 
window as an offset during analysis: typically using conditional 
Poisson regression to estimate a rate ratio. Because the SCCS 

FIGURE 1    |    Illustration of a case-crossover study to evaluate the association between clarithromycin and myocardial infarction (Wong et al. [26]).

BOX 1    |    Example case-cross over study: clarithromycin and 
myocardial infarction.

Wong et al. used a case-crossover design to study the asso-
ciation between use of clarithromycin, an antibiotic which 
is used for short periods of time, and myocardial infarction 
using data from the Clinical Data Analysis and Reporting 
Systems database in Hong Kong [26]. To implement the 
study, they first selected individuals who had experienced 
a myocardial infarction between 1 January 2003 and 31 
December 2012. The eligibility criteria (age ≥ 18 years and 
≥ 365 days of data availability) were assessed at the first pre-
scription date as the study was nested within an accompa-
nying cohort study. A single focal window of 14 days prior to 
the date of MI, and 100 referent windows of the same length 
were defined, as illustrated in Figure 1.

To analyse the data, each patient contributed a maximum of 
101 rows: 1 for the focal window, and 100 for the reference win-
dows. The minimum dataset necessary for analysis contained 
three columns: one for patient ID, one identifying whether the 
row represented a focal window and one identifying whether 
the exposure occurred in the relevant window. The case-
crossover odds ratio was estimated by fitting a conditional 
logistic regression model, with exposure as the dependent var-
iable and focal window as the independent variable.
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is bi-directional, it does not suffer from the same persistent 
user bias as the CCO when studying chronic medication use. 
However, studying chronic compared to short-term medication 

use in this design does still require specific consideration as 
the risk of time-varying confounding is increased. Power in an 
SCCS depends both on the number of cases included, and the 
ratio of referent to focal time; power calculations SCCS can 
be conducted using both Stata and R [15, 38]. An example of 
the SCCS is provided in Box 3, and the design is illustrated in 
Figure 3.

The SCCS has three key assumptions that must be met for the 
design to give valid estimates [3, 37, 40]. First, outcomes need 
to be either independently recurrent, or rare, where rare is de-
fined as an incidence of < 10% in the whole cohort during the 
study period [41]. If the outcome is not independently recurrent, 
the easiest solution is to only study the first event that occurs 
within the study period [37] provided that this is rare, or to use 
analytical extensions [42, 43]. Second, exposure should be event-
independent; that is, the probability of exposure should not be 
affected by the outcome of interest. This assumption is par-
ticularly important in pharmacoepidemiology, as people who 
experience a safety outcome of interest may delay or be contra-
indicated for further treatment.

Historically, limited violations of this assumption have been han-
dled by defining a transition window (pre-exposure period) right 
before the exposure, which is excluded from the referent window 
[37]. The underlying reasoning is that if the outcome decreases 
the probability of exposure, the probability of having an outcome 
will be lower right before exposure. By removing this time from 
the referent window, we ensure the remaining time reflects the 
‘usual’ frequency of the outcome. However, recent work [44] 
has shown that the ability of pre-exposure windows to correct 
for bias can vary depending on the way in which the outcome 
affects exposure. In  situations where there is only a short-term 
delay to the exposure following the event, the extent of potential 

FIGURE 2    |    Illustration of a case-time-control study to evaluate the association between FQ and AD/AA (Brown et al. [34]).

BOX 2    |    Example case-time-control study: fluoroquinolone and 
aortic aneurysm or dissection.

Brown et  al. used a case-time-control design to assess the 
association between the use of fluoroquinolones, a class of 
antibiotic typically used for short periods of time, and hos-
pitalisation for aortic aneurysm or dissection (AA/AD) [34]. 
Data sources were UK electronic health records from the 
Clinical Practice Research Datalink (Aurum) and GOLD 
databases. Incident cases of hospitalisation for AA/AD 
were identified during an eligibility window that started at 
the latest of 1st of April 1997, one year after registration at 
current practice, 18th birthday and 1 year after practice data 
was deemed to be of research quality by the data provider. 
The eligibility window ended at the earliest of 1st December 
2019, last data collection at practice, death or patient trans-
fer out of practice. The focal window was defined as the 
60 days prior to the outcome, and the referent window was 
90–150 days before the outcome (following a 30-day tran-
sition window [wash-out window]). Controls, matched on 
index date, year of birth, sex and primary care practice, were 
used to calculate an odds ratio adjusted for time trends in 
exposure (Figure 2).

To estimate an odds ratio adjusted for exposure trends, a 
conditional logistic regression model was fitted with an 
interaction term between exposure and case status [12]. A 
simple ratio approach was taken to estimate an active com-
parator odds ratio relative to other comparator antibiotics 
(cephalosporin, trimethoprim and co-amoxiclav) [10].
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bias—counterintuitively—does not depend solely on the length of 
the delay, but also the length of the observation period, and when 
during the observation period most exposures occur. Specifically, 
bias can be introduced by short-term delays if these result in expo-
sures being delayed beyond the end of the observation period, with 
the result that some cases are excluded from the case series. For 
example, in a study of first COVID-19 vaccine doses and venous 

thromboembolism (VTE), the occurrence of a VTE would be ex-
pected to delay receipt of the first dose. However, if the observation 
period is long—for example, spanning several years, such delays 
would not lead to ‘missing’ first doses due to the observation pe-
riod coming to an end. In this situation, there is theoretically no 
bias despite the fact that the occurrence of the outcome causes the 
exposure to be delayed, and inclusion of a pre-exposure window 
would be expected to underestimate the rate ratio. Further sim-
ulation studies to investigate the ability of pre-exposure windows 
to correct for bias in the SCCS and its variants are needed: in the 
meantime, we recommend that researchers concerned about the 
violation of the assumption of event-dependent exposures conduct 
sensitivity analyses using extensions of the SCCS that have been 
developed specifically to handle these situations [45].

Third, the observation period should be event-independent; 
that is, the outcome of interest should not affect the length of 
the study period. This assumption is clearly violated when the 
outcome is death or has a high mortality rate. When studying a 
single exposure, violations of both the second and third assump-
tion can be handled by starting follow-up at the first exposure. 
Otherwise, extensions of the design need to be used [46].

The SCCS is also sensitive to time-varying confounders, such 
as age or treatment indication. In  situations where it is diffi-
cult to adjust for these, alternative methods such as the semi-
parametric SCCS [47, 48] can be considered.

4.2   |   Variants of the Self-Controlled Case Series

The self-controlled risk interval (SCRI) is a variation on the 
SCCS, which specifies one or more discrete referent windows 
and disregards remaining follow-up time during the study pe-
riod [49]. Referent windows can be placed either before or after 

FIGURE 3    |    Illustration of a self-controlled case series to evaluate the association between COVID-19 vaccines and GBS (Walker et al. [39]).

BOX 3    |    Example self-controlled case series: COVID-19 
vaccines and GBS.

Walker et  al. used a self-controlled case series design to 
study the association between the first dose of the COVID-19 
vaccine and the risk of neurological safety events, including 
GBS using data from OpenSAFELY-TPP [39]. Although vac-
cination is not a transient exposure, the increase in the risk 
of GBS after vaccination was hypothesised to be transient. 
Adults with at least 1 year of continuous GP registration on 
1 July 2020 were included, and those with missing age, sex, 
postcode or pregnancy were excluded. The end of the study 
period was 7 July 2021. After each COVID-19 vaccine, a focal 
window of 4–42 days was added. The first 4 days after vac-
cination was considered as a transition window (induction 
window) (as development of the outcome was considered 
biologically impossible), and the 28 days before vaccination 
was used as another transition window (pre-exposure win-
dow) (Figure 3). The primary analyses were unadjusted for 
calendar time, as minimal trends in these outcomes were 
expected over the study period.

For each individual, a row for each relevant time period 
was created, and a rate ratio calculated through conditional 
Poisson regression using the natural log of the length of each 
time window as an offset.
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the exposure, or, in the case of multiple windows, both before 
and after the exposure (resulting in a bi-directional design) [41]. 
The key benefit of the SCRI compared to the SCCS is that it is 
easier to operationalise in its simplest form, each individual con-
tributes only two rows. In contrast, it is not unusual for the data 
management required for an SCCS to be more complex—par-
ticularly if season or age trends need to be taken into account. 

Existing comparisons of the SCCS and SCRI are scarce: but 
simulation studies indicate that their sensitivity to bias is sim-
ilar [40, 50], and applied studies using both designs have found 
comparable results [51]. An example of the SCRI is provided in 
Box 4, and the design is illustrated in Figure 4.

There are several methodological extensions of the SCCS, de-
signed to accommodate situations where key underlying assump-
tions may be violated, for example when the outcome of interest 
is death and thus exposure is no longer event-independent. There 
is an extension based on estimating equations that can account 
for potential violations of the event-dependent exposure as-
sumption. It is readily implemented using the R package SCCS, 
although it does require that unexposed cases are included as 
it relies on the estimation of counterfactual exposure histories. 
This extension is also the main option available to researchers 
studying multiple exposures in the presence of violations of the 
assumption of event-dependent exposures [53]. This extension 
can also be combined with proposed methods for handling 
event-dependent observation periods like restricting the study 
to first events only [46]. Another variant is the so-called ‘trun-
cated SCCS’, these are equivalent to an SCRI with multiple post-
exposure referent windows, the length of which is determined 
by the anticipated vaccinations schedule between doses [54]. 
This extension can also accommodate violations of the assump-
tion of event-dependent exposures, and may be more straight-
forward to implement. Flexible versions of the SCCS that can 
accommodate dependency between events have also been devel-
oped, although software for its implementation is not yet widely 
available [43]. Finally, there are several approaches which allow 
researchers to handle time-varying confounding. Although this 
can be accounted for analytically by splitting the follow-up time 
according to the values of the time-varying confounders and in-
cluding them as covariates in the regression model, it may be 

FIGURE 4    |    Illustration of a self-controlled risk interval design to evaluate the association between COVID-19 vaccines and myocarditis (Bots 
et al. [52]).

BOX 4    |    Example self-controlled risk interval: COVID-19 
vaccines and myocarditis.

Bots et al. used a self-controlled risk interval design to study 
the association between COVID-19 vaccination and the risk 
of myocarditis using data from five European databases 
[52]. The hypothesis was that COVID-19 vaccination may 
increase the risk of myocarditis for a short time after vacci-
nation. All vaccinated cases occurring between 1 September 
2020 and the end of data availability were eligible for inclu-
sion, exclusion criteria were less than 365 days of follow-up 
before the start of the study period and a history of myocar-
ditis. The date of the first vaccination was defined as Day 0, 
the referent window was placed before the first vaccination 
(day −90; −30) and a transition window (pre-exposure win-
dow) (day −29; −1) was implemented to account for potential 
event-dependent exposure. After each vaccination instance, 
a 28-day focal window was defined (Figure  4). Analyses 
were adjusted for calendar time in 30-day windows because 
the COVID-19 pandemic was expected to introduce time 
trends in outcome incidence.

For each individual, a row for each relevant time period was 
created, and an incidence rate ratio was calculated through 
conditional Poisson regression.

 10991557, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pds.70071, W

iley O
nline L

ibrary on [28/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



9 of 12

challenging to accurately model these effects in case of small 
numbers. It is therefore recommended to include unexposed 
cases in the case series, as this allows for more accurate model-
ling of time-varying confounders [15]. Active comparators can 
also be used for this purpose, if available [10].

5   |   Choosing a Self-Controlled Study Design

Self-controlled designs can either be an alternative or addition to 
a between-person design, depending on the research question. 
As mentioned before, self-controlled designs are most suited 
to study the acute effects of transient exposures. Although it is 
possible to study persistent or chronic exposures in exposure-
anchored self-controlled designs, provided there is at least some 
unexposed follow-up time, caution should be exercised [6]. The 
risk of time-varying confounding increases with increasing 
length of follow-up, and is particularly high if there is a system-
atic ordering of the focal versus referent windows, that is, if all 
focal windows occur before or after the referent windows. Self-
controlled designs are ill-suited to study outcomes or exposures 
that are difficult to establish the timing of correctly, such as dis-
eases with an unclear time of onset (endometriosis) and treat-
ments that are taken ‘as needed’ (migraine medication), in which 
case a between-person design is more appropriate. However, it 
seems self-controlled designs have historically been underused 
in pharmacoepidemiology, with a systematic review identifying 
‘missed opportunities’ for the application of self-controlled case 
series in approximately 15% of pharmacoepidemiology studies in 
2014 [55]. Worksheets to help researchers assess the suitability of 
a self-controlled design in different situations are available [6].

Traditionally, self-controlled designs have been presented as an-
swering a slightly different question (‘why now’) compared to 
between-person designs (‘why me’) [3]. However, recent work 
putting the CCO in a formal causal inference framework has 
shown that the CCO odds ratio can approximate the (causal) 
hazard ratio from a hypothetical randomised trial when a num-
ber of assumptions, largely corresponding to the informal as-
sumptions listed in this paper, are met [56]. Of course, estimands 
from self-controlled designs may not always correspond to those 
from similar between-person designs due to subtle differences 
in treatment strategies considered, time periods covered, or the 
effect measure calculated. When using more than one design, it 
is important to consider these aspects to ensure that measures of 
effect derived from different designs can be fairly compared and 
contrasted. Despite these complexities we encourage research-
ers to consider whether a self-controlled design may be a useful 
complement to ongoing cohort or case–control studies, as the 
use of more than one study design (each with their own distinct 
limitations and assumptions) is an important principle of trian-
gulation of evidence [57].

Which self-controlled study design is most suitable will also de-
pend on the research question. In general, outcome-anchored 
self-controlled designs will be more sensitive to time trends in 
the exposure, and these may therefore not be suitable for the 
study of exposures where there are rapid time trends or changes 
in prescribing, such as vaccines. However, outcome-anchored 
designs (provided that referent windows precede focal win-
dows) do not make any assumptions around event-dependent 

exposures and observation periods. This means that they may 
be more suited for the study of events with a high mortality rate 
or side effects which can result in contraindication. There are 
also important pragmatic considerations to take into account: in 
some instances it might not make a material difference if a SCCS 
or SCRI study design is used, but pragmatic considerations such 
as the time taken for post-exposure follow-up time to accrue 
might mean that one option is preferable to the other. In situ-
ations where the exposure has an indirect protective effect of 
the outcome—for example, COVID-19 vaccines might be asso-
ciated with a lower risk of cardiovascular outcomes due to their 
protective effect against SARS-CoV-2 infection—bi-directional 
study designs or study designs using post-vaccination referent 
windows may be more suited for studying the direct effects 
of the exposure. A study comparing the case-crossover and 
self-controlled case series found that both led to comparable 
conclusions in the absence of violations of the underlying as-
sumptions [58], emphasising the importance of ensuring that re-
searchers choose a self-controlled design that is suited for their 
specific research question. This is in line with findings from 
a later simulation study comparing a case-crossover and self-
controlled case series for the purposes of studying drug–drug 
interactions, which found that when no assumptions were vio-
lated, both designs were unbiased with the self-controlled case 
series having slightly better precision [59].

6   |   Sensitivity Analyses for Self-Controlled Study 
Designs

For self-controlled studies, common sensitivity analyses in-
volve varying the length of the reference and focal windows. 
For outcome-anchored studies, these explore the presence of 
exposure time trends—for example, by plotting prescription 
trends over time. In exposure-anchored studies, these explore 
assumptions around event-dependent exposures: this might 
involve graphical assessments using exposure-centred interval 
plots [40] or the application of methodological extensions de-
scribed above.

Methods such as quantitative bias analysis (QBA) and negative 
controls have rarely been applied to self-controlled settings, and 
researchers may find it more challenging to apply, as many tools 
and tutorials on these methods have not been developed with 
self-controlled designs in mind. For example, summary-level 
QBA for misclassification is typically based on the construc-
tion of contingency (2 × 2) tables  [60]: these are less intuitive 
to construct for self-controlled studies. We recently developed 
a simple framework adaptation of QBA for an SCRI based on 
the assumption that the SCRI compares observed and expected 
intervals in which both exposure and outcome are present, and 
modelling this assumption with and without confounders [61], 
but more research on the application of QBA in self-controlled 
designs is needed. E-values can also be calculated for both 
CCO and SCCS [62], although it is important to note that they 
would quantify the strength of time-varying unmeasured con-
founding. Negative controls [63] are typically used to detect 
unmeasured confounding—which in the self-controlled setting 
is time-varying. It is therefore important to choose a negative 
control for which all assumptions of the self-controlled design 
in question hold, and that is hypothesised to be subject to the 
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same underlying—time-varying—confounding that is caus-
ing concern for the primary analyses. These criteria are more 
stringent than for between-person designs and might make it 
challenging to identify suitable negative outcome controls for 
self-controlled analyses. Negative exposure controls, specifi-
cally, active comparators—are more straightforward to identify 
and apply in these designs, and detailed guidance on how to use 
these to control for time-varying confounding has been pub-
lished [10, 51].

7   |   Conclusions and Future Directions

Self-controlled designs can be a useful complement to tradi-
tional between-person designs when strong unmeasured, time-
stable confounding is a concern. They remain an area of active 
research, with several extensions and new tools for implementa-
tion recently developed. Further work on the use of sensitivity 
analysis such as QBA in the self-controlled setting would be of 
value, and the increasing use of the target trial [64] and estimand 
frameworks [65] highlights the importance of theoretical work 
formalising the assumptions underlying self-controlled designs 
to facilitate their interpretation. Despite the strong assumptions 
they rely on, self-controlled designs are a useful complement 
to more traditional designs which can support triangulation of 
different lines of evidence, ultimately allowing for more robust 
inferences around drug safety.
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