TY - JOUR
T1 - Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules
AU - Luo, Wenhao
AU - Cao, Wenxiu
AU - Bruijnincx, Pieter C.A.
AU - Lin, Lu
AU - Wang, Aiqin
AU - Zhang, Tao
PY - 2019/6
Y1 - 2019/6
N2 - Increasing demand for renewable chemicals and fuels has stimulated the search for alternative feedstocks and is driving the ongoing transition to a more renewables-based society. Considerable academic efforts have been directed at the valorisation of biomass sources and derived intermediates, so called platform molecules, to produce value-added chemicals and fuels. In this contribution, opportunities are discussed for the application of zeolite-supported bifunctional catalysts in the conversion of biomass sources into chemicals and fuels via hydrodeoxygenation (HDO). Such metal/zeolite catalyst systems play a prominent role in many of these biomass HDO routes. Emphasis is put on the current progress in metal/zeolite-catalysed HDO of three selected, promising routes involving biomass-derived platform molecules and the model compounds that mimic more complex feeds. Four key concepts of metal/zeolite catalysts, such as combining metal and Brønsted acid sites, site-ratio balancing, proximity between metal and acid functions and shape selectivity are discussed in order to provide a comprehensive overview. In addition, two challenges related to the accessibility of the active sites and catalyst stability in the liquid phase, typically a hot, highly polar, and protic reaction medium, are discussed. Finally, the open challenges and perspectives regarding the development of metal/zeolite catalysts for biomass HDO reactions are examined.
AB - Increasing demand for renewable chemicals and fuels has stimulated the search for alternative feedstocks and is driving the ongoing transition to a more renewables-based society. Considerable academic efforts have been directed at the valorisation of biomass sources and derived intermediates, so called platform molecules, to produce value-added chemicals and fuels. In this contribution, opportunities are discussed for the application of zeolite-supported bifunctional catalysts in the conversion of biomass sources into chemicals and fuels via hydrodeoxygenation (HDO). Such metal/zeolite catalyst systems play a prominent role in many of these biomass HDO routes. Emphasis is put on the current progress in metal/zeolite-catalysed HDO of three selected, promising routes involving biomass-derived platform molecules and the model compounds that mimic more complex feeds. Four key concepts of metal/zeolite catalysts, such as combining metal and Brønsted acid sites, site-ratio balancing, proximity between metal and acid functions and shape selectivity are discussed in order to provide a comprehensive overview. In addition, two challenges related to the accessibility of the active sites and catalyst stability in the liquid phase, typically a hot, highly polar, and protic reaction medium, are discussed. Finally, the open challenges and perspectives regarding the development of metal/zeolite catalysts for biomass HDO reactions are examined.
U2 - 10.1039/c9gc01216h
DO - 10.1039/c9gc01216h
M3 - Article
SN - 1463-9262
VL - 21
SP - 3744
EP - 3768
JO - Green Chemistry
JF - Green Chemistry
IS - 14
ER -