TY - JOUR
T1 - W±-boson production in p–Pb collisions at √sNN = 8.16 TeV and Pb–Pb collisions at √sNN = 5.02 TeV
AU - ALICE Collaboration
AU - Adler, A.
AU - Ahmad, S.
AU - Basu, S.
AU - Cai, M.
AU - Caliva, A.
AU - Chakraborty, P.
AU - Chattopadhyay, S.
AU - Chattopadhyay, S.
AU - Christakoglou, P.
AU - Chujo, T.
AU - Ding, Y.
AU - Dobrin, A.
AU - Dubla, A.
AU - Fabbietti, L.
AU - Fan, F.
AU - Fan, W.
AU - Ghosh, S. K.
AU - Grelli, A.
AU - Gupta, R.
AU - Han, Y.
AU - Harris, J. W.
AU - Hassan, H.
AU - Hofman, B.
AU - Hohlweger, B.
AU - Isakov, A.
AU - Islam, M. S.
AU - Jacobs, P. M.
AU - Jung, J.
AU - Keijdener, D. L.D.
AU - Keil, M.
AU - Khan, A. M.
AU - Khan, S.
AU - Kim, M.
AU - Kim, S.
AU - Klein, J.
AU - Klein, S.
AU - Krzewicki, M.
AU - Kuhn, C.
AU - Kuijer, P. G.
AU - Kumar, N.
AU - La Pointe, S. L.
AU - Li, X. L.
AU - Li, X. L.
AU - Liu, A.
AU - Liu, D. H.
AU - Liu, J.
AU - Lopez, J. A.
AU - Luparello, G.
AU - Ma, Y. G.
AU - Mao, Y.
AU - Martin, N. A.
AU - Mohanty, A. P.
AU - Muhuri, S.
AU - Novitzky, N.
AU - Oliveira Da Silva, A. C.
AU - Park, J.
AU - Peitzmann, T.
AU - Peng, X.
AU - Poljak, N.
AU - Qiu, S.
AU - Rehman, A.
AU - Richert, T.
AU - Rogoschinski, T. S.
AU - Roy, S.
AU - Saha, S.
AU - Saha, S.
AU - Sahoo, B.
AU - Sas, M. H.P.
AU - Sharma, A.
AU - Singh, R.
AU - Singh, R.
AU - Singh, R.
AU - Snellings, R. J.M.
AU - Spijkers, R.
AU - Swain, S.
AU - Thomas, D.
AU - van Doremalen, L. V.R.
AU - van Leeuwen, M.
AU - van Weelden, R. J.G.
AU - Vermunt, L.
AU - Verweij, M.
AU - Wang, C.
AU - Wang, D.
AU - Weber, M.
AU - Wessels, J. P.
AU - Wu, W.
AU - Wu, Y.
AU - Xu, R.
AU - Yamaguchi, Y.
AU - Yang, S.
AU - Yin, Z.
AU - Zhang, B.
AU - Zhang, S.
AU - Zhang, X.
AU - Zhang, Y.
AU - Zhou, D.
AU - Zhou, Y.
AU - Zhu, J.
AU - Zhu, Y.
AU - Pliatskas Stylianidis, Christos
AU - Correia Zanoli, Henrique
N1 - Funding Information:
The authors would like to thank Hannu Paukkunen, Rabah Abdul Khalek, and Aleksander Kusina for providing the various model calculations. The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the National Roadmap for Research Infrastructures 2020¿2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC) , Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency - BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA), Thailand Science Research and Innovation (TSRI) and National Science, Research and Innovation Fund (NSRF), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: Marie Skłodowska Curie, Strong 2020 - Horizon 2020, European Research Council (grant nos. 824093, 896850, 950692), European Union; Academy of Finland (Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland; Programa de Apoyos para la Superación del Personal Académico, UNAM, Mexico.
Publisher Copyright:
© 2023, The Author(s).
PY - 2023/5
Y1 - 2023/5
N2 - The production of the W± bosons measured in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision sNN = 8.16 TeV and Pb–Pb collisions at sNN = 5.02 TeV with ALICE at the LHC is presented. The W± bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region −4 < ηlabμ < −2.5 with transverse momentum pTμ > 10 GeV/c. While in Pb–Pb collisions the measurements are performed in the forward (2.5 < ycmsμ < 4) rapidity region, in p–Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward (−4.46 < ycmsμ < −2.96) and forward (2.03 < ycmsμ < 3.53) rapidity regions. The W− and W+ production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p–Pb collision centrality, the production cross sections of the W− and W+ bosons are combined and normalised to the average number of binary nucleon–nucleon collision 〈N coll〉. In Pb–Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W±-boson cross sections in p–Pb and Pb–Pb collisions is also reported. The results are compared with perturbative QCD calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDFs and in particular of the light-quark distributions. [Figure not available: see fulltext.].
AB - The production of the W± bosons measured in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision sNN = 8.16 TeV and Pb–Pb collisions at sNN = 5.02 TeV with ALICE at the LHC is presented. The W± bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region −4 < ηlabμ < −2.5 with transverse momentum pTμ > 10 GeV/c. While in Pb–Pb collisions the measurements are performed in the forward (2.5 < ycmsμ < 4) rapidity region, in p–Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward (−4.46 < ycmsμ < −2.96) and forward (2.03 < ycmsμ < 3.53) rapidity regions. The W− and W+ production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p–Pb collision centrality, the production cross sections of the W− and W+ bosons are combined and normalised to the average number of binary nucleon–nucleon collision 〈N coll〉. In Pb–Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W±-boson cross sections in p–Pb and Pb–Pb collisions is also reported. The results are compared with perturbative QCD calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDFs and in particular of the light-quark distributions. [Figure not available: see fulltext.].
KW - Heavy Ion Experiments
KW - Vector Boson Production
UR - http://www.scopus.com/inward/record.url?scp=85159143281&partnerID=8YFLogxK
U2 - 10.1007/JHEP05(2023)036
DO - 10.1007/JHEP05(2023)036
M3 - Article
AN - SCOPUS:85159143281
SN - 1126-6708
VL - 2023
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 5
M1 - 36
ER -