TY - JOUR
T1 - Will policies to promote energy efficiency help or hinder achieving a 1.5 °C climate target?
AU - Patt, Anthony
AU - van Vliet, Oscar
AU - Lilliestam, Johan
AU - Pfenninger, Stefan
PY - 2019/2/14
Y1 - 2019/2/14
N2 - There is a large literature suggesting that improvements in energy efficiency support efforts at climate mitigation. Addressing a conceptual gap in that literature, however, we evaluate whether there are any conditions under which policies to promote improvements in energy efficiency could be counterproductive to efforts to limit climate change to 1.5 °C global warming from pre-industrial times. We identify three conditions under which this could be the case. The first condition is if policies for energy efficiency have a political opportunity cost, in terms of crowding out or delaying policies aimed at decarbonizing energy supply. There is an extensive literature in the fields of political science and policy studies to suggest that this is possible, but there have been no studies examining whether it has actually happened or is likely to happen in the future. The second condition is if investments in energy efficiency improvements come at a higher cost, per unit of fossil energy avoided, than do investments in new renewable energy supply. Current cost estimates suggest that there are some energy efficiency investments for which this is the case, but it is difficult to predict whether this will remain the case in the future. The third condition is if policies for energy efficiency, or specific investments in energy efficiency, were to delay the complete decarbonization of energy supply by more than some critical value. We show that critical delay is quite short—measured in weeks to months—in the case of a 1.5 °C temperature target, assuming constrained availability of negative emission technologies. It is impossible to say whether any of these conditions is likely, but in theory, each of them would appear to be possible.
AB - There is a large literature suggesting that improvements in energy efficiency support efforts at climate mitigation. Addressing a conceptual gap in that literature, however, we evaluate whether there are any conditions under which policies to promote improvements in energy efficiency could be counterproductive to efforts to limit climate change to 1.5 °C global warming from pre-industrial times. We identify three conditions under which this could be the case. The first condition is if policies for energy efficiency have a political opportunity cost, in terms of crowding out or delaying policies aimed at decarbonizing energy supply. There is an extensive literature in the fields of political science and policy studies to suggest that this is possible, but there have been no studies examining whether it has actually happened or is likely to happen in the future. The second condition is if investments in energy efficiency improvements come at a higher cost, per unit of fossil energy avoided, than do investments in new renewable energy supply. Current cost estimates suggest that there are some energy efficiency investments for which this is the case, but it is difficult to predict whether this will remain the case in the future. The third condition is if policies for energy efficiency, or specific investments in energy efficiency, were to delay the complete decarbonization of energy supply by more than some critical value. We show that critical delay is quite short—measured in weeks to months—in the case of a 1.5 °C temperature target, assuming constrained availability of negative emission technologies. It is impossible to say whether any of these conditions is likely, but in theory, each of them would appear to be possible.
KW - Advocacy coalition framework
KW - Climate change
KW - Climate policy
KW - Energy efficiency
UR - http://www.scopus.com/inward/record.url?scp=85050268575&partnerID=8YFLogxK
U2 - 10.1007/s12053-018-9715-8
DO - 10.1007/s12053-018-9715-8
M3 - Article
AN - SCOPUS:85050268575
SN - 1570-646X
VL - 12
SP - 551
EP - 565
JO - Energy Efficiency
JF - Energy Efficiency
IS - 2
ER -