Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT-S10 NDVI time series

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Time series analysis of Normalized Difference Vegetation Index (NDVI) imagery is a powerful tool in studying land use and precipitation interaction in data‐scarce and inaccessible areas. The Fast Fourier Transform (FFT) was applied to the annual time series of 36 average dekadal NDVI images. The dekadal annual average pattern was calculated from 189 NDVI images from April 1998 to June 2003 acquired with the VEGETATION instruments of the SPOT‐4 and SPOT‐5 satellites in Tibet. It is shown that the first two harmonic terms of a Fourier series suffice to distinguish between land use classes. The results indicate that the highest biomass production occurs before the monsoon peak. Regression analysis with 15 meteorological stations has shown that the total amount of precipitation during the growing season shows the strongest relation with the sum of the amplitudes of the first two harmonic terms (R 2 = 0.72). Inter‐annual NDVI variation based on Fourier‐transformed time series was studied and it was shown that, early in the season, the expected NDVI behaviour of the up‐coming season could be forecast; if linked to food production this might provide a robust early warning system. The most important conclusion from this work is that harmonic time series analysis yields more reliable results than ordinary time series analysis.
Original languageEnglish
Pages (from-to)2281-2296
JournalInternational Journal of Remote Sensing
Volume26
Issue number11
DOIs
Publication statusPublished - 1 Jun 2005

Fingerprint

Dive into the research topics of 'Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT-S10 NDVI time series'. Together they form a unique fingerprint.

Cite this