Abstract
The data of full-waveform inversion often contains noise, which induces uncertainties in the inversion results. Ideally, one would like to run a number of independent inversions with different realizations of the noise and assess model-side uncertainties from the resulting models, however this is not feasible because we collect the data only once. To circumvent this restriction, various sampling schemes have been devised to generate an ensemble of models that fit the data to within the noise level. Such sampling schemes typically involve running multiple inversions or evaluating the Hessian of the cost function, both of which are computationally expensive. In this work, we propose a new method to quantify uncertainties based on a novel formulation of the full-waveform inversion problem – wavefield reconstruction inversion. Based on this formulation, we formulate a semidefinite approximation of the corresponding Hessian matrix. By precomputing certain quantities, we are able to apply this Hessian to given input vectors without additional solutions of the underlying partial differential equations. To generate a sample, we solve an auxiliary stochastic optimization problem involving this Hessian. The result is a computationally feasible method that, with little overhead, can generate as many samples as required at small additional cost. We test our method on the synthetic BG Compass model and compare the results to a direct-sampling approach. The results show the feasibility of applying our method to computing statistical quantities such as the mean and standard deviation in the context of wavefield reconstruction inversion.
Original language | English |
---|---|
Title of host publication | SEG Technical Program Expanded Abstracts 2016 |
Publisher | Society of Exploration Geophysicists |
Pages | 1390-1394 |
Number of pages | 5 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- statistical
- frequency-domain
- full-waveform inversion
- 2D