Type one generalized Calabi–Yaus

Michael Bailey, Gil R R. Cavalcanti*, Marco Gualtieri

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We study type one generalized complex and generalized Calabi–Yau manifolds. We introduce a cohomology class that obstructs the existence of a globally defined, closed 2-form which agrees with the symplectic form on the leaves of the generalized complex structure, the twisting class. We prove that in a compact, type one, 4n-dimensional generalized complex manifold the Euler characteristic must be even and equal to the signature modulo four. The generalized Calabi–Yau condition places much stronger constraints: a compact type one generalized Calabi–Yau fibers over the 2-torus and if the structure has one compact leaf, then this fibration can be chosen to be the fibration by the symplectic leaves of the generalized complex structure. If the twisting class vanishes, one can always deform the structure so that it has a compact leaf. Finally we prove that every symplectic fibration over the 2-torus admits a type one generalized Calabi–Yau structure.

Original languageEnglish
Pages (from-to)89-95
Number of pages7
JournalJournal of Geometry and Physics
Volume120
DOIs
Publication statusPublished - 1 Oct 2017

Keywords

  • Generalized Calabi–Yau
  • Generalized complex structures
  • Symplectic fibration

Fingerprint

Dive into the research topics of 'Type one generalized Calabi–Yaus'. Together they form a unique fingerprint.

Cite this