Tracing the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model

Sybren S. Drijfhout, Ernst Maier-Reimer, Uwe Mikolajewicz

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The flow which constitutes the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model has been investigated with the help of a particle tracking method. In the region of North Atlantic Deep Water formation a thousand trajectories were calculated backward in time to the point where they upwell from the deep ocean. Both the three-dimensional velocity field and convective overturning have been used for this calculation. Together, the trajectories form a representative picture of the upper branch of the conveyor belt in the model. In the Atlantic Ocean the path and strength (17 Sv) of the conveyor belt in the model are found to be consistent with observations. All trajectories enter the South Atlantic via Drake Passage, as the model does not simulate any Agulhas leakage. Large changes in water masses occur in the South Atlantic midlatitudes and subtropical North Atlantic. Along its path in the Atlantic the water in the conveyor belt is transformed from Antarctic Intermediate Water to Central North Atlantic Water. On the average the timescale on which the water mass characteristics are approximately conserved is only a few years compared to the timescale of 70 years for the conveyor belt to cross the Atlantic. The ventilation of thermocline waters in the South Atlantic midlatitudes is overestimated in the model due to too much convective deepening of the winter mixed layer. As a result the fraction of the conveyor belt water flowing in the surface layer is also overestimated, along with integrated effects of atmospheric forcing. The abnormally strong water mass transformation in the South Atlantic might be related to the absence of Agulhas leakage in the model. Copyright 1996 by the American Geophysical Union.
Original languageEnglish
Pages (from-to)22563-22575
Number of pages13
JournalJournal of Geophysical Research: Oceans
Volume101
Issue numberC10
DOIs
Publication statusPublished - 1996

Fingerprint

Dive into the research topics of 'Tracing the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model'. Together they form a unique fingerprint.

Cite this