Towards coupling of regional atmosphere models to ice sheet models by mass balance gradients - application to the Greenland Ice Sheet

M.M. Helsen, R.S.W. van de Wal, M.R. van den Broeke, W.J. van de Berg, J. Oerlemans

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation fields from a climate model, and deriving SMB by parameterizing 5 the run-off as a function of temperature, which is often related to surface elevation. In this study, a new parameterization of SMB is presented, designed for use in ice dynamical models to allow a direct adjustment of SMB as a result of a change in elevation (Hs) or a change in climate forcing. This method is based on spatial gradients in the present-day SMB field as computed by a regional climate model. Separate linear 10 relations are derived for ablation and accumulation regimes, using only those pairs of Hs an SMB that are found within a minimum search radius. This approach enables a dynamic SMB forcing of ice sheet models, also for initially non-glaciated areas in the peripheral areas of an ice sheet, and circumvents traditional temperature lapse rate assumptions. The method is applied to the Greenland Ice Sheet (GrIS). Model ex15 periments using both steady-state forcing and more realistic glacial-interglacial forcing result in ice sheet reconstructions and behavior that compare favorably with presentday observations of ice thickness.
Original languageEnglish
Pages (from-to)2115-2157
Number of pages43
JournalCryosphere Discussions
Volume5
DOIs
Publication statusPublished - 2011

Fingerprint

Dive into the research topics of 'Towards coupling of regional atmosphere models to ice sheet models by mass balance gradients - application to the Greenland Ice Sheet'. Together they form a unique fingerprint.

Cite this