Topological and Simplicial Models of Identity Types

B. van den Berg, R. Garner

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    In this paper we construct new categorical models for the identity types of Martin-Löf type theory, in the categories Top of topological spaces and SSet of simplicial sets. We do so building on earlier work of Awodey and Warren [2009], which has suggested that a suitable environment for the interpretation of identity types should be a category equipped with a weak factorization system in the sense of Bousfield--Quillen. It turns out that this is not quite enough for a sound model, due to some subtle coherence issues concerned with stability under substitution; and so our first task is to introduce a slightly richer structure, which we call a homotopy-theoretic model of identity types, and to prove that this is sufficient for a sound interpretation. Now, although both Top and SSet are categories endowed with a weak factorization system---and indeed, an entire Quillen model structure---exhibiting the additional structure required for a homotopy-theoretic model is quite hard to do. However, the categories we are interested in share a number of common features, and abstracting these leads us to introduce the notion of a path object category. This is a relatively simple axiomatic framework, which is nonetheless sufficiently strong to allow the construction of homotopy-theoretic models. Now by exhibiting suitable path object structures on Top and SSet, we endow those categories with the structure of a homotopy-theoretic model and, in this way, obtain the desired topological and simplicial models of identity types.
    Original languageEnglish
    Article number3
    Pages (from-to)3/1-3/44
    Number of pages44
    JournalACM transactions on computational logic (TOCL)
    Volume13
    Issue number1
    DOIs
    Publication statusPublished - 2012

    Fingerprint

    Dive into the research topics of 'Topological and Simplicial Models of Identity Types'. Together they form a unique fingerprint.

    Cite this