Abstract

Once Covid-19 vaccines become available, 5-10 billion vaccine doses should be globally distributed, stored and administered. In this commentary, we discuss how this enormous challenge could be addressed for viral vector-based Covid-19 vaccines by learning from the wealth of formulation development experience gained over the years on stability issues related to live attenuated virus vaccines and viral vector vaccines for other diseases. This experience has led -over time- to major improvements on storage temperature, shelf-life and in-use stability requirements. First, we will cover work on 'classical' live attenuated virus vaccines as well as replication competent viral vector vaccines. Subsequently, we address replication deficient viral vector vaccines. Freeze drying and storage at 2-8 °C with a shelf life of years has become the norm. In the case of pandemics with incredibly high and urgent product demands, however, the desire for rapid and convenient distribution chains combined with short end-user storage times require that liquid formulations with shelf lives of months stored at 2-8 °C be considered. In confronting this "perfect storm" of Covid-19 vaccine stability challenges, understanding the many lessons learned from decades of development and manufacturing of live virus-based vaccines is the shortest path for finding promising and rapid solutions.

Original languageEnglish
Pages (from-to)627-634
Number of pages8
JournalJournal of Pharmaceutical Sciences
Volume110
Issue number2
DOIs
Publication statusPublished - Feb 2021

Keywords

  • COVID-19/immunology
  • COVID-19 Vaccines/immunology
  • Drug Compounding
  • Drug Stability
  • Drug Storage
  • Freeze Drying
  • Genetic Vectors
  • Humans
  • SARS-CoV-2/genetics
  • Vaccines, Attenuated/immunology

Fingerprint

Dive into the research topics of 'The Science is There: Key Considerations for Stabilizing Viral Vector-Based Covid-19 Vaccines'. Together they form a unique fingerprint.

Cite this