The N-methylation of 4-phenylpyridine produces the neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+). We investigated the kinetics of 4-phenylpyridine N-methylation by nicotinamide N-methyltransferase (NNMT) and its effect upon 4-phenylpyridine toxicity in vitro. Human recombinant NNMT possessed 4-phenylpyridine N-methyltransferase activity, with a specific activity of 1.7 ± 0.03 nmol MPP+ produced/h/mg NNMT. Although the Km for 4-phenylpyridine was similar to that reported for nicotinamide, its kcat of 9.3 × 10-5 ± 2 × 10-5 s-1 and specificity constant, kcat/Km, of 0.8 ± 0.8 s-1 M-1 were less than 0.15% of the respective values for nicotinamide, demonstrating that 4-phenylpyridine is a poor substrate for NNMT. At low (<2.5 mM) substrate concentration, 4-phenylpyridine N-methylation was competitively inhibited by dimethylsulphoxide, with a Ki of 34 ± 8 mM. At high (>2.5 mM) substrate concentration, enzyme activity followed substrate inhibition kinetics, with a Ki of 4 ± 1 mM. In silico molecular docking suggested that 4-phenylpyridine binds to the active site of NNMT in two non-redundant poses, one a substrate binding mode and the other an inhibitory mode. Finally, the expression of NNMT in the SH-SY5Y cell-line had no effect cell death, viability, ATP content or mitochondrial membrane potential. These data demonstrate that 4-phenylpyridine N-methylation by NNMT is unlikely to serve as a source of MPP+. The possibility for competitive inhibition by dimethylsulphoxide should be considered in NNMT-based drug discovery studies. The potential for 4-phenylpyridine to bind to the active site in two binding orientations using the same active site residues is a novel mechanism of substrate inhibition.

Original languageEnglish
Pages (from-to)127-136
Number of pages10
JournalInternational Journal of Biochemistry and Cell Biology
Publication statusPublished - May 2018


  • Enzyme kinetics
  • Neurotoxicity
  • N-Methylation
  • Substrate inhibition
  • Substrate specificity


Dive into the research topics of 'The kinetic analysis of the N-methylation of 4-phenylpyridine by nicotinamide N-methyltransferase: Evidence for a novel mechanism of substrate inhibition'. Together they form a unique fingerprint.

Cite this