The influence of tidal currents on the asymmetry of tide-dominated ebb–tidal deltas

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

An idealized numerical model is developed to study the spatial asymmetry of ebb–tidal deltas under influence of large-scale alongshore tidal currents. It is shown that the asymmetry of the delta depends on the magnitude of the cross-shore and large scale alongshore tidal currents, their phase difference, and on the width of the inlet. Model results are compared with observations of ebb–tidal deltas of the tidal inlet systems of the Dutch Wadden Sea and with the ebb–tidal delta of the Eastern Scheldt, located in the southwestern part of the Netherlands. The modeled current and residual sediment transport patterns agree well with observed ones. The modeled asymmetry of the ebb–tidal delta also agree with observed ones. Furthermore, bottom patterns are consistent with those found with a previous version of the idealized model which focused on the modeling of symmetric ebb–tidal deltas. However, the model is not able to reproduce the observed ebb-dominated channel. The underlying physical processes are explained in terms of vorticity dynamics. The convergence of the mean vorticity flux generates mean vorticity and thereby residual circulation. An analysis shows there is competition between two contributions to the convergence of the mean vorticity flux. This competition explains the sensitivity of the results to the model parameters
Original languageUndefined/Unknown
Pages (from-to)159-174
Number of pages16
JournalContinental Shelf Research
Volume29
Issue number1
Publication statusPublished - 2009

Cite this