TY - JOUR
T1 - The impact of oxygen exposure on long-chain alkyl diols and the long chain diol index (LDI) – a long-term incubation study
AU - Reiche, Sophie
AU - Rampen, Sebastiaan W.
AU - Dorhout, Denise J.C.
AU - Sinninghe Damsté, Jaap S.
AU - Schouten, Stefan
PY - 2018/10/1
Y1 - 2018/10/1
N2 - In recent years, long chain alkyl diols (LCDs) have been used increasingly to study and reconstruct past sea surface temperatures using the long chain diol index (LDI), which is based on changes in the distribution of 1,15-LCDs. However, the impact of diagenesis on LCDs and the LDI is still poorly constrained. Here we studied the impact of oxygen exposure on LCDs and the LDI, by aerobically incubating biomass of the LCD-producing alga Nannochloropsis oculata for 271 days. The concentrations of extractable free- and bound, residually ester-bound and residually-bound glycosidic ether- or amide-bound saturated fatty acids and LCDs were determined. A significant impact of oxygen exposure was observed for C14, C16 and C18 saturated fatty acids and the C20:5 polyunsaturated fatty acid, as their concentration decreased significantly over time, irrespective of their mode of binding. LCDs, in contrast, increased significantly in concentration over incubation time, e.g. up to a 30-fold increase in concentrations for residually ester-bound LCDs at day 125 compared to concentrations at the beginning of the experiment. This increase in concentration most likely represents a release of LCDs from the insoluble biopolymer algaenan due to the impact of oxygen exposure. Values of the LDI differed strongly depending on the mode of occurrence of LCDs in the biomass. However, despite the large changes in concentration of LCDs in response to oxygen exposure, the LDI remained relatively stable after prolonged degradation. This suggests that oxygen exposure may not have a substantial impact on the LDI of extractable LCDs used for its determination.
AB - In recent years, long chain alkyl diols (LCDs) have been used increasingly to study and reconstruct past sea surface temperatures using the long chain diol index (LDI), which is based on changes in the distribution of 1,15-LCDs. However, the impact of diagenesis on LCDs and the LDI is still poorly constrained. Here we studied the impact of oxygen exposure on LCDs and the LDI, by aerobically incubating biomass of the LCD-producing alga Nannochloropsis oculata for 271 days. The concentrations of extractable free- and bound, residually ester-bound and residually-bound glycosidic ether- or amide-bound saturated fatty acids and LCDs were determined. A significant impact of oxygen exposure was observed for C14, C16 and C18 saturated fatty acids and the C20:5 polyunsaturated fatty acid, as their concentration decreased significantly over time, irrespective of their mode of binding. LCDs, in contrast, increased significantly in concentration over incubation time, e.g. up to a 30-fold increase in concentrations for residually ester-bound LCDs at day 125 compared to concentrations at the beginning of the experiment. This increase in concentration most likely represents a release of LCDs from the insoluble biopolymer algaenan due to the impact of oxygen exposure. Values of the LDI differed strongly depending on the mode of occurrence of LCDs in the biomass. However, despite the large changes in concentration of LCDs in response to oxygen exposure, the LDI remained relatively stable after prolonged degradation. This suggests that oxygen exposure may not have a substantial impact on the LDI of extractable LCDs used for its determination.
KW - Aerobic degradation
KW - Algaenan
KW - Long chain diol index
KW - Long chain diols
KW - Nannochloropsis oculata
UR - http://www.scopus.com/inward/record.url?scp=85052143376&partnerID=8YFLogxK
U2 - 10.1016/j.orggeochem.2018.08.003
DO - 10.1016/j.orggeochem.2018.08.003
M3 - Article
AN - SCOPUS:85052143376
SN - 0146-6380
VL - 124
SP - 238
EP - 246
JO - Organic Geochemistry
JF - Organic Geochemistry
ER -