TY - JOUR
T1 - The emerging view on the origin and early evolution of eukaryotic cells
AU - Vosseberg, Julian
AU - van Hooff, Jolien J E
AU - Köstlbacher, Stephan
AU - Panagiotou, Kassiani
AU - Tamarit, Daniel
AU - Ettema, Thijs J G
N1 - Publisher Copyright:
© Springer Nature Limited 2024.
PY - 2024/9/11
Y1 - 2024/9/11
N2 - The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
AB - The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
KW - Animals
KW - Archaea/genetics
KW - Bacteria/genetics
KW - Biological Evolution
KW - Eukaryota/genetics
KW - Eukaryotic Cells/cytology
KW - Mitochondria/genetics
KW - Phylogeny
KW - Prokaryotic Cells/cytology
KW - Symbiosis
UR - http://www.scopus.com/inward/record.url?scp=85196522747&partnerID=8YFLogxK
U2 - 10.1038/s41586-024-07677-6
DO - 10.1038/s41586-024-07677-6
M3 - Review article
C2 - 39261613
SN - 0028-0836
VL - 633
SP - 295
EP - 305
JO - Nature
JF - Nature
IS - 8029
ER -