Abstract
We present a theoretical model to describe binary mixtures of semi-flexible rods, applied here to fd-virus suspensions. We investigate the effects of rod stiffness on both monodisperse and binary systems, studying thick-thin and long-short mixtures. For monodisperse systems, we find that fd-virus particles have to be made extremely stiff to even approach the behavior of rigid rods. For thick-thin mixtures, we find increasingly rich phase behavior as the rods are either made more flexible or if their diameter ratio is increased. For long-short rod mixtures we find that the phase behavior is controlled by the relative stiffness of the rods, with increasing the stiffness of the long rods or decreasing that of the short rods resulting in richer phase behavior. We also calculate the state point dependent effective shape of the rods. The flexible rods studied here always behave as shorter, thicker rigid rods, but with an effective shape that varies widely throughout the phase diagrams, and plays a key role in determining phase behavior
Original language | English |
---|---|
Pages (from-to) | 144106 |
Number of pages | 13 |
Journal | Journal of Chemical Physics |
Volume | 135 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2011 |