TY - JOUR
T1 - The effects of galacto-oligosaccharides on faecal parameters in healthy dogs and cats
AU - Corbee, Ronald Jan
N1 - Publisher Copyright:
© 2023
PY - 2024/2
Y1 - 2024/2
N2 - The aim of this study was to evaluate the effects of galacto-oligosaccharides (GOS) on faecal parameters in healthy dogs and cats. To this end, 20 dogs and 20 Domestic shorthair cats were fed a commercially available adult dog food, or cat food, respectively, with either syrup containing GOS (at 1% w galacto-oligosaccharides/w formulated feed) on top (test group) or no topping (control group) for 56 days in a cross-over design. The study consisted of 2 periods of 24 days adaptation, followed by 4 days of collection of faeces. Faecal samples were tested for moisture, nitrogen, pH, macronutrients, enzymes, and fermentation products. The faecal microbiota were analysed by 16S rDNA profiling. It appeared that GOS have different effects in dogs compared to cats. In dogs, the addition of GOS resulted in increased carbohydrate fermentation (increase of acetic and butyric acid), whereas in cats GOS resulted in increased amino acid fermentation (increase of isovaleric acid). The α-diversity of the canine faecal microbiota was reduced by dietary GOS (Inverse Simpson Index, p = 0.063; Shannon index, p = 0.035) whereas the α-diversity of cat faecal microbiota was unaffected (Inverse Simpson Index, p = 0.539; Shannon index, p = 0.872). Lachnospiraceae spp. and Bifidobacterium spp. positively responded to GOS in both cats and dogs. Lactobacillus spp. and Enterobacteriaceae spp. positively responded to GOS in dogs. In both dogs and cats, GOS may therefore improve stool microbiota and result in the production of specific metabolites that are beneficial to gut health.
AB - The aim of this study was to evaluate the effects of galacto-oligosaccharides (GOS) on faecal parameters in healthy dogs and cats. To this end, 20 dogs and 20 Domestic shorthair cats were fed a commercially available adult dog food, or cat food, respectively, with either syrup containing GOS (at 1% w galacto-oligosaccharides/w formulated feed) on top (test group) or no topping (control group) for 56 days in a cross-over design. The study consisted of 2 periods of 24 days adaptation, followed by 4 days of collection of faeces. Faecal samples were tested for moisture, nitrogen, pH, macronutrients, enzymes, and fermentation products. The faecal microbiota were analysed by 16S rDNA profiling. It appeared that GOS have different effects in dogs compared to cats. In dogs, the addition of GOS resulted in increased carbohydrate fermentation (increase of acetic and butyric acid), whereas in cats GOS resulted in increased amino acid fermentation (increase of isovaleric acid). The α-diversity of the canine faecal microbiota was reduced by dietary GOS (Inverse Simpson Index, p = 0.063; Shannon index, p = 0.035) whereas the α-diversity of cat faecal microbiota was unaffected (Inverse Simpson Index, p = 0.539; Shannon index, p = 0.872). Lachnospiraceae spp. and Bifidobacterium spp. positively responded to GOS in both cats and dogs. Lactobacillus spp. and Enterobacteriaceae spp. positively responded to GOS in dogs. In both dogs and cats, GOS may therefore improve stool microbiota and result in the production of specific metabolites that are beneficial to gut health.
KW - Canine
KW - Carnivore
KW - Feline
KW - Milk
KW - Prebiotic
UR - http://www.scopus.com/inward/record.url?scp=85181694300&partnerID=8YFLogxK
U2 - 10.1016/j.rvsc.2023.105116
DO - 10.1016/j.rvsc.2023.105116
M3 - Article
C2 - 38160491
SN - 0034-5288
VL - 167
JO - Research in Veterinary Science
JF - Research in Veterinary Science
M1 - 105116
ER -