Abstract
Nanoporosity is a characteristic feature of geological formations that provides potential pathways for geofluids to meander and interact with minerals. Confinement of water within nanopores leads to unique phenomena. The dielectric constant of water becomes anisotropic and adopts tensorial properties rather than remaining a scalar value. In such nanoconfinement, it has been found that the permittivity of water decreases perpendicularly and increases parallel to the interface. As geofluids are rarely pure water in nature, being a water-salt(−gas) mixture within the Earth, it becomes pivotal to examine how these additional constituents of water affect the permittivity of fluids confined within the nanopores of rocks. In this study, we present the calculation of the permittivity of saline water in calcite slit nanopores using molecular dynamics simulations under low-pressure-temperature conditions. The dielectric properties are weakly dependent on salinity for both the perpendicular and parallel dielectric permittivity components. We analyzed the atomic charge and polarization density of the fluid perpendicular to the nanochannel walls and the orientation of water molecules’ dipole inside the nanochannel. From our analysis, most of these factors were generally not altered significantly in the presence of salinity. These findings are significant because they enable us to use well-studied pure water properties under nanoconfinement to determine the geochemical behavior of fluids within natural nanoporous systems.
Original language | English |
---|---|
Pages (from-to) | 2284-2293 |
Number of pages | 10 |
Journal | ACS Earth and Space Chemistry |
Volume | 8 |
Issue number | 11 |
Early online date | 5 Nov 2024 |
DOIs | |
Publication status | Published - 21 Nov 2024 |
Keywords
- molecular dynamics
- nanoconfinement
- nanoporosity
- salt concentration
- water permittivity