The Effect of Formulation and Processing Parameters on the Size of mPEG-b-p(HPMA-Bz) Polymeric Micelles

Mahsa Bagheri, Jaleesa Bresseleers, Aida Varela Moreira, Olivier Sandre, Silvie A Meeuwissen, Raymond M Schiffelers, Josbert M Metselaar, Cornelus F van Nostrum, Jan C M van Hest, Wim E Hennink

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Micelles composed of block copolymers of poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) have shown great promise as drug delivery carriers due to their excellent stability and high loading capacity. In the present study, parameters influencing micelle size were investigated to tailor sizes in the range of 25 to 100 nm. Micelles were prepared by a nanoprecipitation method and their size was modulated by the block copolymer properties such as molecular weight, their hydrophilic to hydrophobic ratio, homopolymer content, as well as formulation and processing parameters. It was shown that the micelles have a core-shell structure using a combination of dynamic light scattering and transmission electron microscopy analysis. By varying the degree of polymerization of the hydrophobic block (NB) between 68 and 10, at a fixed hydrophilic block mPEG5K (NA=114), it was shown that the hydrophobic core of the micelle was collapsed following the power law of (NB×Nagg)1/3. Further, the calculated brush height was similar for all the micelles examined (10 nm), indicating that crew-cut micelles were made. Both addition of homopolymer and preparation of micelles at lower concentrations or lower rates of addition of the organic solvent to the aqueous phase increased the size of micelles due to partitioning of the hydrophobic homopolymer chains to the core of the micelles and lower nucleation rates, respectively. Furthermore, it was shown that by using different solvents, the size of the micelles substantially changed. The use of acetone, acetonitrile, ethanol, THF and dioxane, resulted in micelles in the size range from 45 to 60 nm after removal of the organic solvents. The use of DMF and DMSO led to markedly larger sizes of 75 and 180 nm respectively. In conclusion, the results show that by modulating polymer properties and processing conditions, micelles with tailorable sizes can be obtained.

Original languageEnglish
Pages (from-to)15495–15506
JournalLangmuir
Volume34
Issue number50
Early online date12 Nov 2018
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'The Effect of Formulation and Processing Parameters on the Size of mPEG-b-p(HPMA-Bz) Polymeric Micelles'. Together they form a unique fingerprint.

Cite this