The Complexity of the Hausdorff Distance

Paul Jungeblut, Linda Kleist, Till Miltzow

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

We investigate the computational complexity of computing the Hausdorff distance. Specifically, we show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets is bounded by a given threshold is complete for the complexity class ∀∃_
Original languageEnglish
Title of host publication38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany
EditorsXavier Goaoc, Michael Kerber
PublisherSchloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH
Pages48:1-48:17
Volume224
ISBN (Electronic)9783959772273
DOIs
Publication statusPublished - 1 Jun 2022

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume224
ISSN (Print)1868-8969

Keywords

  • Hausdorff Distance
  • Semi-Algebraic Set
  • Existential Theory of the Reals
  • Universal Existential Theory of the Reals
  • Complexity Theory

Fingerprint

Dive into the research topics of 'The Complexity of the Hausdorff Distance'. Together they form a unique fingerprint.

Cite this