The circumstellar medium around a rapidly rotating, chemically homogeneously evolving, possible gamma-ray burst progenitor

A.J. Marle, N. Langer, S.C. Yoon, G. Garcia-Segura

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Context. Rapidly rotating, chemically homogeneously evolving massive stars are considered to be progenitors of long gamma-ray bursts. Aims. We present numerical simulations of the evolution of the circumstellar medium around a rapidly rotating 20 M star at a metallicity of Z = 0.001. Its rotation is fast enough to produce quasi-chemically homogeneous evolution. While conventionally, a star of 20 M would not evolve into a Wolf-Rayet stage, the considered model evolves from the main sequence directly to the helium main sequence. Methods. We use the time-dependent wind parameters, such as mass loss rate, wind velocity and rotation-induced wind anisotropy from the evolution model as input for a 2D hydrodynamical simulation. Results. While the outer edge of the pressure-driven circumstellar bubble is spherical, the circumstellar medium close to the star shows strong non-spherical features during and after the periods of near-critical rotation. Conclusions. We conclude that the circumstellar medium around rapidly rotating massive stars differs considerably from the surrounding material of non-rotating stars of similar mass. Multiple blue-shifted high velocity absorption components in gamma-ray burst afterglow spectra are predicted. As a consequence of near critical rotation and short stellar evolution time scales during the last few thousand years of the star’s life, we find a strong deviation of the circumstellar density profile in the polar direction from the 1/R2 density profile normally associated with stellar winds close to the star.
Original languageUndefined/Unknown
Pages (from-to)769-778
Number of pages10
JournalAstronomy and Astrophysics
Volume478
Issue number3
Publication statusPublished - 2008

Cite this