Abstract
Context. Rapidly rotating, chemically homogeneously evolving massive stars are considered to be progenitors of long gamma-ray
bursts.
Aims. We present numerical simulations of the evolution of the circumstellar medium around a rapidly rotating 20 M star at a metallicity
of Z = 0.001. Its rotation is fast enough to produce quasi-chemically homogeneous evolution. While conventionally, a star of
20 M would not evolve into a Wolf-Rayet stage, the considered model evolves from the main sequence directly to the helium main
sequence.
Methods. We use the time-dependent wind parameters, such as mass loss rate, wind velocity and rotation-induced wind anisotropy
from the evolution model as input for a 2D hydrodynamical simulation.
Results. While the outer edge of the pressure-driven circumstellar bubble is spherical, the circumstellar medium close to the star
shows strong non-spherical features during and after the periods of near-critical rotation.
Conclusions. We conclude that the circumstellar medium around rapidly rotating massive stars differs considerably from the surrounding
material of non-rotating stars of similar mass. Multiple blue-shifted high velocity absorption components in gamma-ray
burst afterglow spectra are predicted. As a consequence of near critical rotation and short stellar evolution time scales during the last
few thousand years of the star’s life, we find a strong deviation of the circumstellar density profile in the polar direction from the
1/R2 density profile normally associated with stellar winds close to the star.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 769-778 |
Number of pages | 10 |
Journal | Astronomy and Astrophysics |
Volume | 478 |
Issue number | 3 |
Publication status | Published - 2008 |