TY - JOUR
T1 - Tetraspanin-decorated extracellular vesicle-mimetics as a novel adaptable reference material
AU - Lozano-Andrés, Estefanía
AU - Libregts, Sten F
AU - Toribio, Victor
AU - Royo, Félix
AU - Morales, Sara
AU - López-Martín, Soraya
AU - Valés-Gómez, Mar
AU - Reyburn, Hugh T
AU - Falcón-Pérez, Juan Manuel
AU - Wauben, Marca H
AU - Soto, Manuel
AU - Yáñez-Mó, María
PY - 2019
Y1 - 2019
N2 - Features like small size, low refractive index and polydispersity pose challenges to the currently available detection methods for Extracellular Vesicles (EVs). In addition, the lack of appropriate standards to set up the experimental conditions makes it difficult to compare analyses obtained by different technical approaches. By modifying synthetic nanovesicles with recombinant antigenic regions of EV-enriched tetraspanins, we aimed to construct an EV-mimetic that can be used as a suitable standard for EV analyses. To this end, the sequences of the large extracellular loops of the tetraspanins CD9, CD63 and CD81 were tagged with a target sequence for the biotin ligase BirA, and co-transformed with a BirA expression plasmid into Escherichia coli. GST fusion proteins were then isolated by affinity chromatography and released using thrombin. Biotinylated recombinant tetraspanin-loops were then coupled to (strept)avidin-coated synthetic nanovesicles and analysed and characterised by Dot-blot, Western-blot, Nanoparticle Tracking Analysis, Flow Cytometry and Transmission Electron Microscopy. With this method, we were able to efficiently produce tetraspanin-domain decorated nanovesicles that share biophysical properties with natural EVs, can be detected using specific antibodies against common EV markers such as tetraspanins, and can be used as robust reference materials for detection techniques that are often used in the EV field.
AB - Features like small size, low refractive index and polydispersity pose challenges to the currently available detection methods for Extracellular Vesicles (EVs). In addition, the lack of appropriate standards to set up the experimental conditions makes it difficult to compare analyses obtained by different technical approaches. By modifying synthetic nanovesicles with recombinant antigenic regions of EV-enriched tetraspanins, we aimed to construct an EV-mimetic that can be used as a suitable standard for EV analyses. To this end, the sequences of the large extracellular loops of the tetraspanins CD9, CD63 and CD81 were tagged with a target sequence for the biotin ligase BirA, and co-transformed with a BirA expression plasmid into Escherichia coli. GST fusion proteins were then isolated by affinity chromatography and released using thrombin. Biotinylated recombinant tetraspanin-loops were then coupled to (strept)avidin-coated synthetic nanovesicles and analysed and characterised by Dot-blot, Western-blot, Nanoparticle Tracking Analysis, Flow Cytometry and Transmission Electron Microscopy. With this method, we were able to efficiently produce tetraspanin-domain decorated nanovesicles that share biophysical properties with natural EVs, can be detected using specific antibodies against common EV markers such as tetraspanins, and can be used as robust reference materials for detection techniques that are often used in the EV field.
KW - extracellular vesicles
KW - tetraspanins
KW - nanovesicles
KW - niosomes
KW - mimetic
KW - standardisation
KW - flow cytometry
U2 - 10.1080/20013078.2019.1573052
DO - 10.1080/20013078.2019.1573052
M3 - Article
C2 - 30863514
SN - 2001-3078
VL - 8
JO - Journal of Extracellular Vesicles
JF - Journal of Extracellular Vesicles
IS - 1
M1 - 1573052
ER -