Abstract
T2* mapping is promising for the evaluation of articular cartilage collagen. In this work, a groove model in a large animal is used as a model for post-traumatic arthritis. We hypothesized that T2* mapping could be employed to differentiate between healthy and (subtly) damaged cartilage. Eight carpal joints were obtained from four adult Shetland ponies that had been included in the groove study. In this model, grooves were surgically created on the proximal articular surface of the intermediate carpal bone (radiocarpal joint) and the radial facet of the third carpal bone (middle carpal joint) by either coarse disruption or sharp incision. After nine months, T2* mapping of the entire carpal joint was carried out on a 7.0T whole body magnetic resonance imaging (MRI) scanner by means of a gradient echo multi echo sequence. Afterwards, assessment of collagen orientation was carried out based on Picrosirius Red-stained histological sections, visualized by polarized light microscopy (PLM). The average T2* relaxation time in grooved samples was lower than in contralateral control sites. Opposite to the grooved areas, the "kissing sites" had a higher average T2* relaxation time than the grooved sites. PLM showed mild changes in orientation of the collagen fibers, particularly around blunt grooves. This work shows that T2* relaxation times are different in healthy cartilage versus (early) damaged cartilage, as induced by the equine groove model. Additionally, the average T2* relaxation times are different in kissing lesions versus the grooved sites. This article is protected by copyright. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 2383-2389 |
Journal | Journal of Orthopaedic Research |
Volume | 38 |
Issue number | 11 |
Early online date | 3 Jun 2020 |
DOIs | |
Publication status | Published - Nov 2020 |
Keywords
- cartilage
- groove model
- MRI
- T2* mapping