Synergistic interaction of phosphate nanoparticles from fish by-products and phosphate-solubilizing bacterial consortium on maize growth and phosphorus cycling

Piera Quattrocelli*, Clara Piccirillo, Eiko E. Kuramae, Robert C. Pullar, Laura Ercoli, Elisa Pellegrino

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Phosphate nanomaterials, such as hydroxyapatite/β-tricalcium nanoparticles (nHAs) derived from food industry by-products, offer a sustainable alternative to enhance P-use efficiency in agriculture. However, their limited solubility remains a challenge. This study first investigated the mechanisms of P solubilization of salmon and tuna bones (SnHAs and TnHAs) in fifteen strains of phosphate-solubilizing bacteria (PSB) by an in vitro system. Then, best-performing strains were assembled in a consortium and tested in vivo on maize. We hypothesized that combining nHAs and the PSB consortium inoculated as seed coating (SC) outperforms single treatments alone in promoting plant growth and P cycling, and ensures the establishment in plant-soil system without a bacterial reinforcement (BR) by an additional inoculum suspension. The synergistic effect of nHAs and PSB was proved, improving maize root (+22 %) and total plant biomass (+29 %), as well as P (+32 %) and K (66 %) uptake compared to single treatments. With nHAs and SC, P-use efficiency and recovery increased by 25 % and three-fold, respectively, compared to nHAs alone or with bacterial reinforcement. Consistently, root and substrate bacterial biomass were associated with nHAs plus SC, while nHAs alone or with PSB upregulated PHT1;1 and PHT1;2 transporter genes in maize. Finally, linking the in vitro and in vivo system, we demonstrated that propionic acid production and P-solubilization efficiency of PSB co-applied with nHAs are key drivers of maize growth and P uptake. Our findings indicated that co-applying nHAs and PSB through SC offers a sustainable strategy to improve maize P-use efficiency.

Original languageEnglish
Article number179082
JournalScience of the Total Environment
Volume973
DOIs
Publication statusPublished - 10 Apr 2025

Bibliographical note

Publisher Copyright:
© 2025 The Authors

Keywords

  • Food by-products
  • Inoculum establishment
  • Microbial seed coating
  • Nanofertilizers
  • P-use efficiency
  • Phosphate transporters

Fingerprint

Dive into the research topics of 'Synergistic interaction of phosphate nanoparticles from fish by-products and phosphate-solubilizing bacterial consortium on maize growth and phosphorus cycling'. Together they form a unique fingerprint.

Cite this