Abstract
The modeling of ice sheets in Earth system models (ESMs) is an active area of research with applications to future sea level rise projections and paleoclimate studies. A major challenge for surface mass balance (SMB) modeling with ESMs arises from their coarse resolution. This paper evaluates the elevation class (EC) method as an SMB downscaling alternative to the dynamical downscaling of regional climate models. To this end, we compare EC-simulated elevation-dependent surface energy and mass balance gradients from the Community Earth System Model 1.0 (CESM1.0) with those from the regional climate model RACMO2.3. The EC implementation in CESM1.0 combines prognostic snow albedo, a multilayer snow model, and elevation corrections for two atmospheric forcing variables: temperature and humidity. Despite making no corrections for incoming radiation and precipitation, we find that the EC method in CESM1.0 yields similar SMB gradients to RACMO2.3, in part due to compensating biases in snowfall, surface melt, and refreezing gradients. We discuss the sensitivity of the results to the lapse rate used for the temperature correction. We also evaluate the impact of the EC method on the climate simulated by the ESM and find minor cooling over the Greenland ice sheet and Barents and Greenland seas, which compensates for a warm bias in the ESM due to topographic smoothing. Based on our diagnostic procedure to evaluate the EC method, we make several recommendations for future implementations.
Original language | English |
---|---|
Pages (from-to) | 3193-3208 |
Number of pages | 16 |
Journal | Cryosphere |
Volume | 13 |
Issue number | 12 |
DOIs | |
Publication status | Published - 4 Dec 2019 |
Funding
Acknowledgements. Computing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). The material is based upon work supported by NCAR, which is a major facility sponsored by the National Science Foundation under cooperative agreement no. 1852977. The CESM project is supported primarily by the National Science Foundation. Brice Noël acknowledges funding from the Polar Program of NWO and NESSC. We thank the editor Xavier Fettweis and three anonymous reviewers, whose comments helped improve the manuscript. erlandse Organisatie voor Wetenschappelijk Onderzoek (grant no. ALWOP.2015.096), the European Research Council (grant no. ERC-StG-678145-CoupledIceClim), and the Netherlands Earth System Science Centre (OCW, grant no. 024.002.001).