TY - JOUR
T1 - Succesfully carrying out complex learning-tasks through guiding teams’ qualitative and quantitative reasoning
AU - Slof, B.
AU - Erkens, G.
AU - Kirschner, P.A.
AU - Janssen, J.J.H.M.
AU - Jaspers, J.G.M.
PY - 2012
Y1 - 2012
N2 - This study investigated whether and how scripting learners' use of representational tools in a computer supported collaborative learning (CSCL)-environment fostered their collaborative performance on a complex business-economics task. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely defining the problem and proposing multiple solutions, followed by determining suitability of the solutions and coming to a definitive problem solution. Two tools facilitated construction of causal or mathematical domain representations. Each was suited for carrying out the part-task demands of one specific problem-solving phase; the causal was matched to problem-solution phase and the mathematical (in the form of a simulation) to the solution-evaluation phase. Teams of learners (N = 34, Mean age = 15.7) in four experimental conditions carried out the part-tasks in a predefined order, but differed in the representational tool/tools they received during the collaborative problem-solving process. The tools were matched, partly matched or mismatched to the part-task demands. Teams in the causal-only (n = 9) and simulation-only (n = 9) conditions received either a causal or a simulation tool and were, thus, supported in only one of the two part-tasks. Teams in the simulation-causal condition (n = 9) received both tools, but in an order that was mismatched to the part-task demands. Teams in the causal-simulation condition (n = 7) received both tools in an order that matched the part-task demands of the problem phases. Results revealed that teams receiving part-task congruent tools constructed more task-appropriate representations and had more elaborated discussions about the domain. As a consequence, those teams performed better on the complex learning-task.
AB - This study investigated whether and how scripting learners' use of representational tools in a computer supported collaborative learning (CSCL)-environment fostered their collaborative performance on a complex business-economics task. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely defining the problem and proposing multiple solutions, followed by determining suitability of the solutions and coming to a definitive problem solution. Two tools facilitated construction of causal or mathematical domain representations. Each was suited for carrying out the part-task demands of one specific problem-solving phase; the causal was matched to problem-solution phase and the mathematical (in the form of a simulation) to the solution-evaluation phase. Teams of learners (N = 34, Mean age = 15.7) in four experimental conditions carried out the part-tasks in a predefined order, but differed in the representational tool/tools they received during the collaborative problem-solving process. The tools were matched, partly matched or mismatched to the part-task demands. Teams in the causal-only (n = 9) and simulation-only (n = 9) conditions received either a causal or a simulation tool and were, thus, supported in only one of the two part-tasks. Teams in the simulation-causal condition (n = 9) received both tools, but in an order that was mismatched to the part-task demands. Teams in the causal-simulation condition (n = 7) received both tools in an order that matched the part-task demands of the problem phases. Results revealed that teams receiving part-task congruent tools constructed more task-appropriate representations and had more elaborated discussions about the domain. As a consequence, those teams performed better on the complex learning-task.
M3 - Article
SN - 0020-4277
VL - 40
SP - 623
EP - 643
JO - Instructional Science
JF - Instructional Science
IS - 3
ER -