Abstract
We present SpotOn, a web server to identify and classify interfacial residues as Hot-Spots (HS) and Null-Spots (NS). SpotON implements a robust algorithm with a demonstrated accuracy of 0.95 and sensitivity of 0.98 on an independent test set. The predictor was developed using an ensemble machine learning approach with up-sampling of the minor class. It was trained on 53 complexes using various features, based on both protein 3D structure and sequence. The SpotOn web interface is freely available at: http://milou.science.uu.nl/services/SPOTON/.
Original language | English |
---|---|
Article number | 8007 |
Journal | Scientific Reports |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Dec 2017 |