Spatio-temporal variation in groundwater head affected by stratigraphic heterogeneity of the alluvial aquifer in Northwest India

S. K. Joshi, W.M. van Dijk, A.L. Densmore, E.H. Sutanudjaja, C.R. Jackson, S. Gupta, A.E.A. Lafare, J.D. Mackay, P.J. Mason, R. Sinha

Research output: Contribution to conferenceAbstractOther research output

Abstract

Groundwater is a primary source of freshwater in the alluvial aquifer system of northwestern India. Unsustainable exploitation of the groundwater resources has led to a regional hotspot in groundwater depletion. Rapid groundwater-level decline shows spatial variation, as the effects of various stresses, including precipitation, potential evapotranspiration and abstraction, are likely to be influenced by the stratigraphic and geomorphic heterogeneity between sediment fan and interfan areas (see Geomorphological map in Figure A). We used a transfer function-noise (TFN) time series approach to quantify the effect of the various stress components in the period 1974-2010, based on predefined impulse response functions (IRFs) of von Asmuth et al. (2008). The objective of this study was 1) to acquire the impulse response function of various stresses, 2) assess the spatial estimation parameter (the zeroth moment, M0) of the spatial development of the groundwater head and 3) relate the spatial M0 to the observed stratigraphic and geomorphic heterogeneity. We collected information on the groundwater head pre- and post-monsoon, the district-wise monthly precipitation and potential evapotranspiration, and we modeled the monthly abstraction rate using land-use information. The TFN identified the IRF of precipitation as well as abstraction. The IRF, summarized in the parameter M0, identified a hotspot for the abstraction stress (see M0 spatial map for abstraction in Figure B) at the margins of the Sutlej and Yamuna fans. No hotspot is observed for the precipitation stress, but the M0 for precipitation increases with distance from the Himalayan front. At larger distances from the Himalayan front, observed groundwater head rises cannot be explained by the IRFs for the abstraction and precipitation stresses. This is likely because the current TFN models do not account for other stresses, such as recharge by canal leakage, which are locally important. We conclude that the spatial variation in the M0 for abstraction is controlled by stratigraphic and geomorphic heterogeneity. The fan margins and the interfan area are more affected by abstraction as these areas are underlain by fewer, and thinner, aquifer bodies them the fans themselves.
Original languageEnglish
Publication statusPublished - 11 Dec 2017
EventAGU Fall Meeting 2017 - New Orleans, United States
Duration: 11 Dec 201715 Dec 2017
https://fallmeeting.agu.org/2017/#

Conference

ConferenceAGU Fall Meeting 2017
Abbreviated titleAGU Fall Meeting 2017
Country/TerritoryUnited States
CityNew Orleans
Period11/12/1715/12/17
Internet address

Fingerprint

Dive into the research topics of 'Spatio-temporal variation in groundwater head affected by stratigraphic heterogeneity of the alluvial aquifer in Northwest India'. Together they form a unique fingerprint.

Cite this