Sequential Stub Matching for Asymptotically Uniform Generation of Directed Graphs with a Given Degree Sequence

Femke van Ieperen, Ivan Kryven

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We discuss sequential stub matching for directed graphs and show that this process can be used to sample simple digraphs with asymptotically equal probability. The process starts with an empty edge set and repeatedly adds edges to it with a certain state-dependent bias until the desired degree sequence is fulfilled, whilst avoiding placing a double edge or self-loop. We show that uniform sampling is achieved in the sparse regime when the maximum degree dmax is asymptotically dominated by m1/4, where m is the number of edges. The proof is based on deriving various combinatorial estimates related to the number of digraphs with a given degree sequence and controlling concentration of these estimates in large digraphs. This suggests that sequential stub matching can be viewed as a practical algorithm for almost uniform sampling of digraphs. We show that this algorithm can be implemented to feature a linear expected runtime O(m).
Original languageEnglish
Number of pages46
JournalAnnals of Combinatorics
DOIs
Publication statusE-pub ahead of print - 7 Aug 2024

Keywords

  • 05C20
  • 05C80
  • 68W20
  • 68W25
  • Directed graphs
  • Random graphs
  • Randomised approximation algorithms

Fingerprint

Dive into the research topics of 'Sequential Stub Matching for Asymptotically Uniform Generation of Directed Graphs with a Given Degree Sequence'. Together they form a unique fingerprint.

Cite this