Semidefinite programming for model-based sensorless adaptive optics

J. Antonello, M. Verhaegen, R. Fraanje, T.I.M. van Werkhoven, H.C. Gerritsen, C.U. Keller

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by sequentially changing the settings of the adaptive element until a predetermined image quality metric is optimized. An efficient aberration correction can be achieved by modeling the image quality metric with a quadratic polynomial. We propose a new method to compute the parameters of the polynomial from experimental data. This method guarantees that the quadratic form in the polynomial is semidefinite, resulting in a more robust computation of the parameters with respect to existing methods. In addition, we propose an algorithm to perform aberration correction requiring a minimum of N+1 measurements, where N is the number of considered aberration modes. This algorithm is based on a closed-form expression for the exact optimization of the quadratic polynomial. Our arguments are corroborated by experimental validation in a laboratory environment.
Original languageEnglish
Pages (from-to)2428-2438
Number of pages11
JournalJournal of the Optical Society of America. A, Optics, image science, and vision
Volume29
Issue number11
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Semidefinite programming for model-based sensorless adaptive optics'. Together they form a unique fingerprint.

Cite this