Abstract
The concept of a positive feedback between ice flow and enhanced melt rates in a warmer climate fuelled the debate regarding the temporal and spatial controls on seasonal ice acceleration. Here we combine melt, basal water pressure, and ice velocity data. We show using twenty years of data covering the whole ablation area that there is no strong feedback between annual ice velocities and melt rates. Annual velocities even slightly decreased with increasing melt. Results also indicate that melt variations are most important for velocity variations in the upper ablation zone up to the equilibrium line altitude. During the extreme melt in 2012 a large velocity response near the equilibrium line was observed, highlighting the possibility of rapidly changing bed conditions in this part of the ice sheet that may lead to a doubling of the annual ice velocity.
Original language | English |
---|---|
Pages (from-to) | 4619-4644 |
Journal | Cryosphere Discussions |
Volume | 8 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2014 |