Self-reference in Arithmetic I

Volker Halbach, Albert Visser

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

A Gödel sentence is often described as a sentence saying about itself that it is not provable, and a Henkin sentence as a sentence stating its own provability. We discuss what it could mean for a sentence of arithmetic to ascribe to itself a property such as provability or unprovability. The starting point will be the answer Kreisel gave to Henkin’s problem. We describe how the properties of the supposedly self-referential sentences depend on the chosen coding, the formulae expressing the properties and the way a fixed points for the formulae are obtained. This paper is the first of two papers. In the present paper we focus on provability. In part II, we will consider other properties like Rosser provability and partial truth predicates.

Original languageEnglish
Pages (from-to)671-691
Number of pages20
JournalReview of Symbolic Logic
Volume7
Issue number4
DOIs
Publication statusPublished - 7 Dec 2014

Keywords

  • arithmetization
  • self-reference
  • intensionality

Fingerprint

Dive into the research topics of 'Self-reference in Arithmetic I'. Together they form a unique fingerprint.

Cite this