Self-assembly of pericentriolar material in interphase cells lacking centrioles

Fangrui Chen, Jingchao Wu, Malina K Iwanski, Daphne Jurriens, Arianna Sandron, Milena Pasolli, Gianmarco Puma, Jannes Z Kromhout, Chao Yang, Wilco Nijenhuis, Lukas C Kapitein, Florian Berger, Anna Akhmanova

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole18 independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152 or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus25 end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.

Original languageEnglish
Article numbere77892
Pages (from-to)1-47
JournaleLife
Volume11
DOIs
Publication statusPublished - 5 Jul 2022

Keywords

  • Animals
  • Centrioles/metabolism
  • Centrosome/metabolism
  • Dyneins/metabolism
  • Interphase
  • Microtubules/metabolism
  • Human
  • PLK4
  • pericentrin
  • microtubule-organizing center
  • pericentriolar material
  • centrosome
  • dynein
  • microtubule
  • CAMSAP

Fingerprint

Dive into the research topics of 'Self-assembly of pericentriolar material in interphase cells lacking centrioles'. Together they form a unique fingerprint.

Cite this