TY - JOUR
T1 - Selected Tetraspanins Functionalized Niosomes as Potential Standards for Exosome Immunoassays
AU - García-Manrique, Pablo
AU - Serrano-Pertierra, Esther
AU - Lozano-Andrés, Estefanía
AU - López-Martín, Soraya
AU - Matos, María
AU - Gutiérrez, Gemma
AU - Yáñez-Mó, María
AU - Blanco-López, María Carmen
PY - 2020/5/18
Y1 - 2020/5/18
N2 - Quantitative detection of exosomes in bio-fluids is a challenging task in a dynamic research field. The absence of a well-established reference material (RM) for method development and inter-comparison studies could be potentially overcome with artificial exosomes: lab-produced biomimetic particles with morphological and functional properties close to natural exosomes. This work presents the design, development and functional characteristics of fully artificial exosomes based on tetraspanin extracellular loops-coated niosomes, produced by bio-nanotechnology methods based on supra-molecular chemistry and recombinant protein technology. Mono- and double-functionalized particles with CD9/CD63 tetraspanins have been developed and characterized from a morphological and functional point of view. Produced bio-particles showed close similarities with natural entities in terms of physical properties. Their utility for bioanalysis is demonstrated by their detection and molecular-type discrimination by enzyme-linked immunosorbent assays (ELISAs), one of the most frequent bio-analytical method found in routine and research labs. The basic material based on streptavidin-coated niosomes allows the surface functionalization with any biotinylated protein or peptide, introducing versatility. Although promising results have been reported, further optimizations and deeper characterization will help this innovative biomaterial become a robust RM for validation and development of diagnostic tools for exosomes determination.
AB - Quantitative detection of exosomes in bio-fluids is a challenging task in a dynamic research field. The absence of a well-established reference material (RM) for method development and inter-comparison studies could be potentially overcome with artificial exosomes: lab-produced biomimetic particles with morphological and functional properties close to natural exosomes. This work presents the design, development and functional characteristics of fully artificial exosomes based on tetraspanin extracellular loops-coated niosomes, produced by bio-nanotechnology methods based on supra-molecular chemistry and recombinant protein technology. Mono- and double-functionalized particles with CD9/CD63 tetraspanins have been developed and characterized from a morphological and functional point of view. Produced bio-particles showed close similarities with natural entities in terms of physical properties. Their utility for bioanalysis is demonstrated by their detection and molecular-type discrimination by enzyme-linked immunosorbent assays (ELISAs), one of the most frequent bio-analytical method found in routine and research labs. The basic material based on streptavidin-coated niosomes allows the surface functionalization with any biotinylated protein or peptide, introducing versatility. Although promising results have been reported, further optimizations and deeper characterization will help this innovative biomaterial become a robust RM for validation and development of diagnostic tools for exosomes determination.
U2 - 10.3390/nano10050971
DO - 10.3390/nano10050971
M3 - Article
C2 - 32443605
SN - 2079-4991
VL - 10
JO - Nanomaterials (Basel, Switzerland)
JF - Nanomaterials (Basel, Switzerland)
IS - 5
ER -