Seasonal streamflow forecasting with the global forecasting system FEWS-World

N.A.N.N. Candogan Yossef, L.P.H. van Beek, H. Winsemius, M.F.P. Bierkens

Research output: Contribution to conferenceAbstractOther research output

Abstract

The year-to-year variability of river discharge brings about risks and opportunities in water resources management. Reliable hydrological forecasts and effective communication allow several sectors to make more informed management decisions. In many developing regions of the world, there are no efficient hydrological forecasting systems. For these regions, a global forecasting system which indicates increased probabilities of streamflow excesses or shortages over long lead-times can be of great value. FEWS-World is developed for this purpose. The system incorporates the global hydrological model PCR-GLOBWB and delivers streamflow forecasts on a global scale. This study investigates the skill and value of FEWS-World. Skill is defined as the ability of the system to forecast discharge extremes; and value is its usefulness for possible users and ultimately for affected populations. Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from the European Center for Medium-Range Weather Forecasts (ECMWF). The results will be disseminated on the internet to provide valuable information for users in data and model-poor regions of the world. The preliminary skill assessment of PCR-GLOBWB in reproducing flow extremes is carried out for a selection of 20 large rivers of the world. The model is run for a historical period, with a meteorological forcing data set based on observations from the Climate Research Unit of the University of East Anglia, and the ERA-40 reanalysis of ECMWF. Model skill in reproducing monthly anomalies as well as floods and droughts is assessed by applying verification measures developed for deterministic meteorological forecasts. The results of this preliminary analysis shows that even where the simulated hydrographs are biased, higher skills can be attained in reproducing monthly anomalies and extreme events. The prospects for seasonal/monthly forecasting of hydrological extremes are therefore positive. Next, the true skill of the global hydrological forecasting system FEWS-World is assessed in retroactive forecasting mode, using seasonal meteorological forecasts subject to uncertainty from numerical weather prediction (NWP) models. The system is forced with ensemble seasonal meteorological forecasts from the seasonal forecast archives of ECMWF. We assess the skill of FEWS-World in forecasting monthly anomalies and extreme events on a range of different lead-times by applying verification measures for ensemble forecasts. Although forecasting skill decreases with increasing lead time, the value of forecasts does not necessarily do so. The real value of a forecast is to be determined on the basis of the benefits and costs of possible actions that can be taken in response to a forecast, provided that information on forecast reliability is properly communicated. A preliminary investigation of the forecast requirements and response options of several sectors over lead times from short-range through medium-range to monthly and seasonal show that most sectors benefit from seasonal forecasts to prepare for appropriate response
Original languageEnglish
PagesH53G-1497
Number of pages1
Publication statusPublished - 5 Dec 2011
EventAmerican Geophysical Union (AGU) Fall Meeting in San Francisco, USA - San Fransisco
Duration: 5 Dec 20119 Dec 2011

Conference

ConferenceAmerican Geophysical Union (AGU) Fall Meeting in San Francisco, USA
CitySan Fransisco
Period5/12/119/12/11

Bibliographical note

American Geophysical Union (AGU) Fall Meeting in San Francisco, USA

Fingerprint

Dive into the research topics of 'Seasonal streamflow forecasting with the global forecasting system FEWS-World'. Together they form a unique fingerprint.

Cite this