Abstract
Plant phenotypic plasticity plays an important role in nitrogen (N) acquisition and use under nitrogen-limited conditions. However, this role has never been quantified as a function of N availability, leaving it unclear whether plastic responses should be considered as potential targets for selection. A combined modelling and experimentation approach was adopted to quantify the role of plasticity in N uptake and plant yield. Based on a greenhouse experiment we considered plasticity in two maize (Zea mays) traits: root-to-leaf biomass allocation ratio and emergence rate of axial roots. In a simulation experiment we individually enabled or disabled both plastic responses for maize stands grown across six N levels. Both plastic responses contributed to maintaining a higher N uptake, and plant productivity as N availability declined compared with stands in which plastic responses were disabled. We conclude that plastic responses quantified in this study may be a potential target trait in breeding programs for greater N uptake across N levels while it may only be important for the internal use of N under N-limited conditions in maize. Given the complexity of breeding for plastic responses, an a priori model analysis is useful to identify which plastic traits to target for enhanced plant performance.
Original language | English |
---|---|
Pages (from-to) | 5989-6005 |
Number of pages | 17 |
Journal | Journal of Experimental Botany |
Volume | 75 |
Issue number | 18 |
Early online date | 6 Jul 2024 |
DOIs | |
Publication status | Published - 27 Sept 2024 |
Externally published | Yes |
Keywords
- Functional–structural plant model
- maize
- phenotypic plasticity
- root emergence rate
- root system architecture
- root-to-leaf ratio