TY - JOUR
T1 - River plastic transport and storage budget
AU - Schreyers, Louise J.
AU - van Emmerik, Tim H.M.
AU - Huthoff, Fredrik
AU - Collas, Frank P.L.
AU - Wegman, Carolien
AU - Vriend, Paul
AU - Boon, Anouk
AU - de Winter, Winnie
AU - Oswald, Stephanie B.
AU - Schoor, Margriet M.
AU - Wallerstein, Nicholas
AU - van der Ploeg, Martine
AU - Uijlenhoet, Remko
N1 - Publisher Copyright:
© 2024
PY - 2024/8/1
Y1 - 2024/8/1
N2 - Rivers are one of the main conduits that deliver plastic from land into the sea, and also act as reservoirs for plastic retention. Yet, our understanding of the extent of river exposure to plastic pollution remains limited. In particular, there has been no comprehensive quantification of the contributions from different river compartments, such as the water surface, water column, riverbank and floodplain to the overall river plastic transport and storage. This study aims to provide an initial quantification of these contributions. We first identified the main relevant transport processes for each river compartment considered. We then estimated the transport and storage terms, by harmonizing available observations on surface, suspended and floodplain plastic. We applied our approach to two river sections in The Netherlands, with a focus on macroplastics (≥2.5 cm). Our analysis revealed that for the studied river sections, suspended plastics account for over 96% of item transport within the river channel, while their relative contribution to mass transport is only 30%–37% (depending on the river section considered). Surface plastics predominantly consisted of heavier items (mean mass: 7.1 g/#), whereas suspended plastics were dominated by lighter fragments (mean mass: 0.1 g/#). Additionally, the majority (98%) of plastic mass was stored within the floodplains, with the river channel accounting for only 2% of the total storage. Our study developed a harmonized approach for quantifying plastic transport and storage across different river compartments, providing a replicable methodology applicable to different regions. Our findings emphasize the importance of systematic monitoring programs across river compartments for comprehensive insights into riverine plastic pollution.
AB - Rivers are one of the main conduits that deliver plastic from land into the sea, and also act as reservoirs for plastic retention. Yet, our understanding of the extent of river exposure to plastic pollution remains limited. In particular, there has been no comprehensive quantification of the contributions from different river compartments, such as the water surface, water column, riverbank and floodplain to the overall river plastic transport and storage. This study aims to provide an initial quantification of these contributions. We first identified the main relevant transport processes for each river compartment considered. We then estimated the transport and storage terms, by harmonizing available observations on surface, suspended and floodplain plastic. We applied our approach to two river sections in The Netherlands, with a focus on macroplastics (≥2.5 cm). Our analysis revealed that for the studied river sections, suspended plastics account for over 96% of item transport within the river channel, while their relative contribution to mass transport is only 30%–37% (depending on the river section considered). Surface plastics predominantly consisted of heavier items (mean mass: 7.1 g/#), whereas suspended plastics were dominated by lighter fragments (mean mass: 0.1 g/#). Additionally, the majority (98%) of plastic mass was stored within the floodplains, with the river channel accounting for only 2% of the total storage. Our study developed a harmonized approach for quantifying plastic transport and storage across different river compartments, providing a replicable methodology applicable to different regions. Our findings emphasize the importance of systematic monitoring programs across river compartments for comprehensive insights into riverine plastic pollution.
KW - Fluvial
KW - Macroplastics
KW - Microplastics
KW - Pollutants
KW - Sinks
KW - Water quality
UR - http://www.scopus.com/inward/record.url?scp=85195613741&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2024.121786
DO - 10.1016/j.watres.2024.121786
M3 - Article
AN - SCOPUS:85195613741
SN - 0043-1354
VL - 259
JO - Water Research
JF - Water Research
M1 - 121786
ER -