Abstract
We address the issue of resilience of the Atlantic Meridional Overturning Circulation (AMOC) given the many indications that this dynamical system is in a multi-stable regime. A novel approach to resilience based on rare event techniques is presented, which leads to a measure capturing “resistance to change” and “ability to return” aspects in a probabilistic way. The application of this measure to a conceptual model demonstrates its suitability for assessing AMOC resilience but also shows its potential use in many other non-autonomous dynamical systems. This framework is then extended to compute the probability that the AMOC undergoes a transition conditioned on an external forcing. Such conditional probability can be estimated by exploiting the information available when computing the resilience of this system. This allows us to provide a probabilistic view on safe operating spaces by defining a conditional safe operating space as a subset of the parameter space of the (possibly transient) imposed forcing.
Original language | English |
---|---|
Article number | 123162 |
Pages (from-to) | 1-17 |
Number of pages | 17 |
Journal | Chaos |
Volume | 34 |
Issue number | 12 |
DOIs | |
Publication status | Published - 1 Dec 2024 |