Abstract
Issues of reliability are claiming center-stage in the epistemology of machine learning. This paper unifies different branches in the literature and points to promising research directions, whilst also providing an accessible introduction to key concepts in statistics and machine learning – as far as they are concerned with reliability.
| Original language | English |
|---|---|
| Article number | e12974 |
| Number of pages | 11 |
| Journal | Philosophy Compass |
| Volume | 19 |
| Issue number | 5 |
| DOIs | |
| Publication status | Published - May 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Authors. Philosophy Compass published by John Wiley & Sons Ltd.
Funding
Deutsche Forschungsgemeinschaft, Grant/Award Number:BE5601/4-1; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/Award Number: VI.Veni.201F.051; Carl-Zeiss-Stiftung
| Funders | Funder number |
|---|---|
| Carl-Zeiss-Stiftung | |
| Certification and Foundations of Safe Machine Learning Systems | |
| Deutsche Forschungsgemeinschaft | 390727645, EXC 2064, BE5601/4-1 |
| Deutsche Forschungsgemeinschaft | |
| Nederlandse Organisatie voor Wetenschappelijk Onderzoek | VI.Veni.201F.051 |
| Nederlandse Organisatie voor Wetenschappelijk Onderzoek | |
| Dutch Ministry of Education, Culture, and Science | 024.004.031 |