Reliability in Machine Learning

Thomas Grote*, Konstantin Genin, Emily Sullivan

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Issues of reliability are claiming center-stage in the epistemology of machine learning. This paper unifies different branches in the literature and points to promising research directions, whilst also providing an accessible introduction to key concepts in statistics and machine learning – as far as they are concerned with reliability.

Original languageEnglish
Article numbere12974
Number of pages11
JournalPhilosophy Compass
Volume19
Issue number5
DOIs
Publication statusPublished - May 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Philosophy Compass published by John Wiley & Sons Ltd.

Funding

Deutsche Forschungsgemeinschaft, Grant/Award Number:BE5601/4-1; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/Award Number: VI.Veni.201F.051; Carl-Zeiss-Stiftung

FundersFunder number
Carl-Zeiss-Stiftung
Certification and Foundations of Safe Machine Learning Systems
Deutsche Forschungsgemeinschaft390727645, EXC 2064, BE5601/4-1
Deutsche Forschungsgemeinschaft
Nederlandse Organisatie voor Wetenschappelijk OnderzoekVI.Veni.201F.051
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Dutch Ministry of Education, Culture, and Science024.004.031

    Fingerprint

    Dive into the research topics of 'Reliability in Machine Learning'. Together they form a unique fingerprint.

    Cite this