Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: Indications for climate-driven changes during the last 400 years

Stef Vansteenberge*, Niels J. De Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Philippe Claeys, Stijn J. M. Van Malderen, Frank Vanhaecke

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Fast-growing speleothems allow for the reconstruction of palaeoclimate down to a seasonal scale. Additionally, annual lamination in some of these speleothems yields highly accurate age models for these palaeoclimate records, making these speleothems valuable archives for terrestrial climate. In this study, an annually laminated stalagmite from the Han-sur-Lesse cave (Belgium) is used to study the expression of the seasonal cycle in northwestern Europe during the Little Ice Age. More specifically, two historical 12-year-long growth periods (ca. 1593-1605&thinsp;CE and 1635-1646&thinsp;CE) and one modern growth period (1960-2010&thinsp;CE) are analysed on a sub-annual scale for their stable-isotope ratios (<span classCombining double low line"inline-formula">δ13</span>C and <span classCombining double low line"inline-formula">δ18</span>O) and trace-element (Mg, Sr, Ba, Zn, Y, Pb, U) contents. Seasonal variability in these proxies is confirmed with frequency analysis. Zn, Y and Pb show distinct annual peaks in all three investigated periods related to annual flushing of the soil during winter. A strong seasonal in-phase relationship between Mg, Sr and Ba in the modern growth period reflects a substantial influence of enhanced prior calcite precipitation (PCP). In particular, PCP occurs during summers when recharge of the epikarst is low. This is also evidenced by earlier observations of increased <span classCombining double low line"inline-formula">δ13</span>C values during summer. In the 17th century intervals, there is a distinct antiphase relationship between Mg, Sr and Ba, suggesting that processes other than PCP, i.e. varying degrees of incongruent dissolution of dolomite, eventually related to changes in soil activity and/or land-use change are more dominant. The processes controlling seasonal variations in Mg, Sr and Ba in the speleothem appear to change between the 17th century and 1960-2010&thinsp;CE. The Zn, Y, Pb, and U concentration profiles; stable-isotope ratios; and morphology of the speleothem laminae all point towards increased seasonal amplitude in cave hydrology. Higher seasonal peaks in soil-derived elements (e.g. Zn and Y) and lower concentrations of host-rock-derived elements (e.g. Mg, Sr, Ba) point towards lower residence times in the epikarst and higher flushing rates during the 17th century. These observations reflect an increase in water excess above the cave and recharge of the epikarst, due to a combination of lower summer temperatures and increased winter precipitation during the 17th century. This study indicates that the transfer function controlling Mg, Sr and Ba seasonal variability varies over time. Which process is dominant - either PCP, soil activity or dolomite dissolution - is clearly climate driven and can itself be used as a palaeoenvironment proxy.

Original languageEnglish
Pages (from-to)141-160
Number of pages20
JournalClimate of the Past
Volume16
Issue number1
DOIs
Publication statusPublished - 16 Jan 2020

Fingerprint

Dive into the research topics of 'Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: Indications for climate-driven changes during the last 400 years'. Together they form a unique fingerprint.

Cite this