TY - JOUR
T1 - RADIv1
T2 - a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave
AU - Sulpis, O.
AU - Humphreys, M.P.
AU - Wilhelmus, M.M.
AU - Carroll, D.
AU - Berelson, W.M.
AU - Menemenlis, D.
AU - Middelburg, J.J.
AU - Adkins, J.F.
N1 - Funding Information:
Financial support. This research has been supported by the Nether-
Funding Information:
Acknowledgements. Thanks are due to Bernard P. Boudreau, whose CANDI model (Boudreau, 1996b) was a large source of inspiration during the creation of the present RADI model, and to Daniel L. Johnson for fruitful discussions. We thank David Burdige and one anonymous reviewer for their constructive feedback. We also thank Lukas van de Wiel for assistance with the Utrecht Geoscience computer cluster. Olivier Sulpis also acknowledges the Department of Earth and Planetary Sciences at McGill University for financial support during his residency in the graduate program and the Faculty of Science at McGill University for a graduate mobility award. Monica M. Wilhelmus, Dustin Carroll, and Dimitris Menemenlis carried out research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, with support from the Biological Diversity, Carbon Cycle, Physical Oceanography, and Modeling, Analysis, and Prediction Programs.
Publisher Copyright:
© 2022 Olivier Sulpis et al.
PY - 2022/3/11
Y1 - 2022/3/11
N2 - We introduce a time-dependent, one-dimensional model of early diagenesis that we term RADI, an acronym accounting for the main processes included in the model: chemical reactions, advection, molecular and bio-diffusion, and bio-irrigation. RADI is targeted for study of deep-sea sediments, in particular those containing calcium carbonates (CaCO3). RADI combines CaCO3 dissolution driven by organic matter degradation with a diffusive boundary layer and integrates state-of-the-art parameterizations of CaCO3 dissolution kinetics in seawater, thus serving as a link between mechanistic surface reaction modeling and global-scale biogeochemical models. RADI also includes CaCO3 precipitation, providing a continuum between CaCO3 dissolution and precipitation. RADI integrates components rather than individual chemical species for accessibility and is straightforward to compare against measurements. RADI is the first diagenetic model implemented in Julia, a high-performance programming language that is free and open source, and it is also available in MATLAB/GNU Octave. Here, we first describe the scientific background behind RADI and its implementations. Following this, we evaluate its performance in three selected locations and explore other potential applications, such as the influence of tides and seasonality on early diagenesis in the deep ocean. RADI is a powerful tool to study the time-transient and steady-state response of the sedimentary system to environmental perturbation, such as deep-sea mining, deoxygenation, or acidification events.
AB - We introduce a time-dependent, one-dimensional model of early diagenesis that we term RADI, an acronym accounting for the main processes included in the model: chemical reactions, advection, molecular and bio-diffusion, and bio-irrigation. RADI is targeted for study of deep-sea sediments, in particular those containing calcium carbonates (CaCO3). RADI combines CaCO3 dissolution driven by organic matter degradation with a diffusive boundary layer and integrates state-of-the-art parameterizations of CaCO3 dissolution kinetics in seawater, thus serving as a link between mechanistic surface reaction modeling and global-scale biogeochemical models. RADI also includes CaCO3 precipitation, providing a continuum between CaCO3 dissolution and precipitation. RADI integrates components rather than individual chemical species for accessibility and is straightforward to compare against measurements. RADI is the first diagenetic model implemented in Julia, a high-performance programming language that is free and open source, and it is also available in MATLAB/GNU Octave. Here, we first describe the scientific background behind RADI and its implementations. Following this, we evaluate its performance in three selected locations and explore other potential applications, such as the influence of tides and seasonality on early diagenesis in the deep ocean. RADI is a powerful tool to study the time-transient and steady-state response of the sedimentary system to environmental perturbation, such as deep-sea mining, deoxygenation, or acidification events.
UR - http://www.scopus.com/inward/record.url?scp=85127278100&partnerID=8YFLogxK
U2 - 10.5194/gmd-15-2105-2022
DO - 10.5194/gmd-15-2105-2022
M3 - Article
SN - 1991-959X
VL - 15
SP - 2105
EP - 2131
JO - Geoscientific Model Development
JF - Geoscientific Model Development
IS - 5
ER -