TY - JOUR
T1 - Quantum metric of non-Hermitian Su-Schrieffer-Heeger systems
AU - Chen Ye, Chao
AU - Vleeshouwers, W. L.
AU - Heatley, S.
AU - Gritsev, V.
AU - Morais Smith, C.
N1 - Publisher Copyright:
© 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2024/4
Y1 - 2024/4
N2 - Topological insulators have been studied intensively over the last decades. Earlier research focused on Hermitian Hamiltonians, but recently, peculiar and interesting properties were found by introducing non-Hermiticity. In this work, we apply a quantum geometric approach to various Hermitian and non-Hermitian versions of the Su-Schrieffer-Heeger (SSH) model. We find that this method allows one to correctly identify different topological phases and topological phase transitions for all SSH models, but only when using the metric tensor containing both left and right eigenvectors. Whereas the quantum geometry of Hermitian systems is Riemannian, introducing non-Hermiticity leads to pseudo-Riemannian and complex geometries, thus significantly generalizing from the quantum geometries studied thus far. One remarkable example of this is the mathematical agreement between topological phase transition curves and lightlike paths in general relativity, suggesting a possibility of simulating space-time in non-Hermitian systems. We find that the metric in non-Hermitian phases degenerates in such a way that it effectively reduces the dimensionality of the quantum geometry by one. This implies that within linear response theory, one can perturb the system by a particular change of parameters while maintaining a zero excitation rate.
AB - Topological insulators have been studied intensively over the last decades. Earlier research focused on Hermitian Hamiltonians, but recently, peculiar and interesting properties were found by introducing non-Hermiticity. In this work, we apply a quantum geometric approach to various Hermitian and non-Hermitian versions of the Su-Schrieffer-Heeger (SSH) model. We find that this method allows one to correctly identify different topological phases and topological phase transitions for all SSH models, but only when using the metric tensor containing both left and right eigenvectors. Whereas the quantum geometry of Hermitian systems is Riemannian, introducing non-Hermiticity leads to pseudo-Riemannian and complex geometries, thus significantly generalizing from the quantum geometries studied thus far. One remarkable example of this is the mathematical agreement between topological phase transition curves and lightlike paths in general relativity, suggesting a possibility of simulating space-time in non-Hermitian systems. We find that the metric in non-Hermitian phases degenerates in such a way that it effectively reduces the dimensionality of the quantum geometry by one. This implies that within linear response theory, one can perturb the system by a particular change of parameters while maintaining a zero excitation rate.
UR - http://www.scopus.com/inward/record.url?scp=85194374731&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.6.023202
DO - 10.1103/PhysRevResearch.6.023202
M3 - Article
AN - SCOPUS:85194374731
SN - 2643-1564
VL - 6
JO - Physical Review Research
JF - Physical Review Research
IS - 2
M1 - 023202
ER -