Quantile regression to examine the association of air pollution with subclinical atherosclerosis in an adolescent population

Adjani A. Peralta, Joel Schwartz, Diane R. Gold, Judith M. Vonk, Roel Vermeulen, Ulrike Gehring

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background: Air pollution has been associated with carotid intima-media thickness test (CIMT), a marker of subclinical atherosclerosis. To our knowledge, this is the first study to report an association between ambient air pollution and CIMT in a younger adolescent population. Objective: To investigate the associations beyond standard mean regression by using quantile regression to explore if associations occur at different percentiles of the CIMT distribution. Methods: We measured CIMT cross-sectionally at the age of 16 years in 363 adolescents participating in the Dutch PIAMA birth cohort. We fit separate quantile regressions to examine whether the associations of annual averages of nitrogen dioxide (NO2), fine particulate matter (PM2.5), PM2.5 absorbance (a marker for black carbon), PMcoarse and ultrafine particles up to age 14 assigned at residential addresses with CIMT varied across deciles of CIMT. False discovery rate corrections (FDR, p < 0.05 for statistical significance) were applied for multiple comparisons. We report quantile regression coefficients that correspond to an average change in CIMT (µm) associated with an interquartile range increase in the exposure. Results: PM2.5 absorbance exposure at birth was statistically significantly (FDR < 0.05) associated with a 6.23 µm (95% CI: 0.15, 12.3) higher CIMT per IQR increment in PM2.5 absorbance in the 10th quantile of CIMT but was not significantly related to other deciles within the CIMT distribution. For NO2 exposure we found similar effect sizes to PM2.5 absorbance, but with much wider confidence intervals. PM2.5 exposure was weakly positively associated with CIMT while PMcoarse and ultrafine did not display any consistent patterns. Conclusions: Early childhood exposure to ambient air pollution was suggestively associated with the CIMT distribution during adolescence. Since CIMT increases with age, mitigation strategies to reduce traffic-related air pollution early in life could possibly delay atherosclerosis and subsequently CVD development later in life.

Original languageEnglish
Article number107285
Number of pages8
JournalEnvironment International
Volume164
Early online date10 May 2022
DOIs
Publication statusPublished - Jun 2022

Bibliographical note

Funding Information:
National Institutes of Health (NIH), United States, grant T32HL098048. The modeling of the UFP concentrations was supported by an ASPASIA grant from the Dutch Research Council (NWO) to Dr. Ulrike Gehring (project number 015.010.044), the Environmental Defense Fund, EXPOSOME-NL (NWO grant number 024.004.017) and EXPANSE (EU-H2020 Grant number 874627). The PIAMA study was supported by funds from The Netherlands Organization for Health Research and Development; The Netherlands Organization for Scientific Research; The Netherlands Asthma Fund; The Netherlands Ministry of Spatial Planning, Housing, and the Environment; The Netherlands Ministry of Health, Welfare, and Sport; and the National Institute for Public Health and the Environment.

Publisher Copyright:
© 2022 The Author(s)

Keywords

  • Adolescents
  • Air pollution
  • Atherosclerosis
  • Cardiovascular disease
  • Environmental Epidemiology
  • Quantile regression

Fingerprint

Dive into the research topics of 'Quantile regression to examine the association of air pollution with subclinical atherosclerosis in an adolescent population'. Together they form a unique fingerprint.

Cite this