Abstract
Input–output estimates of nitrogen on cropland are essential for improving nitrogen management and better understanding the global nitrogen cycle. Here, we compare 13 nitrogen budget datasets covering 115 countries and regions over 1961–2015. Although most datasets showed similar spatiotemporal patterns, some annual estimates varied widely among them, resulting in large ranges and uncertainty. In 2010, global medians (in TgN yr−1) and associated minimum–maximum ranges were 73 (64–84) for global harvested crop nitrogen; 161 (139–192) for total nitrogen inputs; 86 (68–97) for nitrogen surplus; and 46% (40–53%) for nitrogen use efficiency. Some of the most uncertain nitrogen budget terms by country showed ranges as large as their medians, revealing areas for improvement. A benchmark nitrogen budget dataset, derived from central tendencies of the original datasets, can be used in model comparisons and inform sustainable nitrogen management in food systems.
Original language | English |
---|---|
Pages (from-to) | 529-540 |
Number of pages | 12 |
Journal | Nature Food |
Volume | 2 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2021 |
Bibliographical note
Funding Information:This work resulted in part from a workshop supported by NSF Research Coordination Network awards DEB-1049744/1547041 (awarded to E.D.). X.Z. is supported by the National Science Foundation (CNS-1739823, CBET-2047165, and CBET-2025826). K.N. is supported by a project, JPNP18016, commissioned by the New Energy and Industrial Technology Development Organization (NEDO). FAOSTAT Statistics are collected from FAO member countries, analysed and disseminated with support from the FAO Regular Budget. The views expressed in this publication are those of the authors and do not necessarily reflect the views or policies of the FAO. L.L. is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Commission ERDF Ramón y Cajal grant (RYC‐2016‐20269), Programa Propio from UPM, and acknowledges the Comunidad de Madrid (Spain) and structural funds 2014‐2020 (ERDF and ESF), project AGRISOST‐CM S2018/BAA‐4330 and Spanish MINECO AgroScena-UP (PID2019-107972RB-I00). We acknowledge the global Environment Facility and the UN Environment Programme for the ‘Towards INMS Project’ as a key space to improve understanding of the nitrogen cycle, building the bridge between science and policy.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
Funding
This work resulted in part from a workshop supported by NSF Research Coordination Network awards DEB-1049744/1547041 (awarded to E.D.). X.Z. is supported by the National Science Foundation (CNS-1739823, CBET-2047165, and CBET-2025826). K.N. is supported by a project, JPNP18016, commissioned by the New Energy and Industrial Technology Development Organization (NEDO). FAOSTAT Statistics are collected from FAO member countries, analysed and disseminated with support from the FAO Regular Budget. The views expressed in this publication are those of the authors and do not necessarily reflect the views or policies of the FAO. L.L. is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Commission ERDF Ramón y Cajal grant (RYC‐2016‐20269), Programa Propio from UPM, and acknowledges the Comunidad de Madrid (Spain) and structural funds 2014‐2020 (ERDF and ESF), project AGRISOST‐CM S2018/BAA‐4330 and Spanish MINECO AgroScena-UP (PID2019-107972RB-I00). We acknowledge the global Environment Facility and the UN Environment Programme for the ‘Towards INMS Project’ as a key space to improve understanding of the nitrogen cycle, building the bridge between science and policy.