Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of β-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in β-cells, we generated PTPN2-deficient human stem cell-derived β-like and EndoC-βH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in β-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in β-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress-induced β-cell death. Our results postulate PTPN2 as a key protective factor in β-cells during inflammation and ER stress in autoimmune diabetes.
Original language | English |
---|---|
Pages (from-to) | 653-668 |
Number of pages | 16 |
Journal | Diabetes |
Volume | 71 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- Animals
- Apoptosis/genetics
- Diabetes Mellitus, Type 1/metabolism
- Endoplasmic Reticulum Stress/physiology
- Humans
- Insulin-Secreting Cells/metabolism
- Interferon-gamma/pharmacology
- Mice
- Mice, Inbred NOD
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics