TY - JOUR
T1 - Protists as main indicators and determinants of plant performance
AU - Guo, Sai
AU - Xiong, Wu
AU - Hang, Xinnan
AU - Gao, Zhilei
AU - Jiao, Zixuan
AU - Liu, Hongjun
AU - Mo, Yani
AU - Zhang, Nan
AU - Kowalchuk, George A.
AU - Li, Rong
AU - Shen, Qirong
AU - Geisen, Stefan
N1 - Funding Information:
This study was funded by the National key research and development program (2017YFD0200805), the Fundamental Research Funds for the Central Universities (KYXK202009 and KYZ201871), the Innovative Research Team Development Plan of the Ministry of Education of China (IRT_17R56), the 111 Project of China (B12009), and the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD). Stefan Geisen was supported by an NWO-VENI grant from the Netherlands Organisation for Scientific Research (016.Veni.181.078).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - BACKGROUND: Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes.RESULTS: Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer.CONCLUSIONS: We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers. Video abstract.
AB - BACKGROUND: Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes.RESULTS: Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer.CONCLUSIONS: We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers. Video abstract.
KW - Crop yield enhancement
KW - Organic fertilizers
KW - Soil management
KW - Soil protist community
U2 - 10.1186/s40168-021-01025-w
DO - 10.1186/s40168-021-01025-w
M3 - Article
C2 - 33743825
AN - SCOPUS:85102764274
SN - 2049-2618
VL - 9
SP - 1
EP - 11
JO - Microbiome
JF - Microbiome
IS - 1
M1 - 64
ER -