Abstract
Human influenza viruses are responsible for annual epidemics and occasional pandemics that cause severe illness and mortality in all age groups worldwide. Matrix protein 2 (M2) of influenza A virus is a tetrameric type III membrane protein that functions as a proton-selective channel. The extracellular domain of M2 (M2e) is conserved in human and avian influenza A viruses and is being pursued as a component for a universal influenza A vaccine. To develop a M2e vaccine that is economical and easy to purify, we genetically fused M2e amino acids 2-16 to the N-terminus of pVIII, the major coat protein of filamentous bacteriophage f88. We show that the resulting recombinant f88-M2e2-16 phages are replication competent and display the introduced part of M2e on the phage surface. Immunization of mice with purified f88-M2e2-16 phages in the presence of incomplete Freund's adjuvant, induced robust M2e-specific serum IgG and protected BALB/c mice against challenge with human and avian influenza A viruses. Thus, replication competent filamentous bacteriophages can be used as efficient and economical carriers to display conserved B cell epitopes of influenza A.
Original language | English |
---|---|
Article number | e0126650 |
Pages (from-to) | 1-21 |
Journal | PLoS One |
Volume | 10 |
Issue number | 5 |
DOIs | |
Publication status | Published - 14 May 2015 |
Keywords
- Bacteriophages
- Influenza A virus
- Influenza
- H1N1
- Antibodies
- Enzyme-linked immunoassays
- Immunologic adjuvants
- Vaccines