Abstract
As sea level is rising along many low-lying and densely populated coastal areas, affected communities are investing resources to assess and manage future socio-economic and ecological risks created by current and future sea level rise. Despite significant progress in the scientific understanding of the physical mechanisms contributing to sea level change, projections beyond 2050 remain highly uncertain. Here, we present recent developments in the probabilistic projections of coastal mean sea level rise by 2100, which provides a summary assessment of the relevant uncertainties. Probabilistic projections can be used directly in some of the decision frameworks adopted by coastal engineers for infrastructure design and land use planning. However, relying on a single probability distribution or a set of distributions based upon a common set of assumptions can understate true uncertainty and potentially misinform users. Here, we put the probabilistic projections published over the last 5 years into context.
Original language | English |
---|---|
Pages (from-to) | 1673–1696 |
Number of pages | 24 |
Journal | Surveys in Geophysics |
Volume | 40 |
Early online date | 14 Aug 2019 |
DOIs | |
Publication status | Published - 2019 |
Funding
This paper arose from the workshop on “Understanding the Relationship between Coastal Sea Level and Large-Scale Ocean Circulation” held at the International Space Science Institute (ISSI), Bern, Switzerland on 5–9 March 2018. Parts of this research (TF) were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and a NWO-NPP grant. REK was supported by National Aeronautics and Space Administration (NASA) Grant 80NSSC17K0698 and National Science Foundation grant ICER-1663807. GLC and RvdW were supported by the ERA4CS ECLISEA and INSeaPTION projects (Grant 690462). SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, grant number EP/R024537/1. LPJ is funded by the Robertson Foundation through the Climate Econometrics project (Grant Numbers: 9908921 and 9907422). RvdW received funding from NWO, grant 866.13.001. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Keywords
- Climate change
- Coastal impact
- Probabilistic sea level projections
- Sea level rise