Abstract
Using both analytic and numerical analyses of the Poisson-Nernst-Planck equations, we theoretically investigate the electric conductivity of a conical channel which, in accordance with recent experiments, exhibits a strong non-linear pressure dependence. This mechanosensitive diodic behavior stems from the pressure-sensitive build-up or depletion of salt in the pore. From our analytic results, we find that the optimal geometry for this diodic behavior strongly depends on the flow rate with the ideal ratio of tip-to-base-radii being equal to 0.22 at zero-flow. With increased flow, this optimal ratio becomes smaller and, simultaneously, the diodic performance becomes weaker. Consequently an optimal diode is obtained at zero-flow, which is realized by applying a pressure drop that is proportional to the applied potential and to the inverse square of the tip radius, thereby countering electro-osmotic flow. When the applied pressure deviates from this ideal pressure drop the diodic performance falls sharply, explaining the dramatic mechanosensitivity observed in experiments.
Original language | English |
---|---|
Article number | 101701 |
Number of pages | 7 |
Journal | Physics of Fluids |
Volume | 34 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1 Oct 2022 |