Abstract
The new field of spin cavitronics focuses on the interaction between the magnon excitation of a magnetic element and the electromagnetic wave in a microwave cavity. In the strong interaction regime, such an interaction usually gives rise to the level anticrossing for the magnonic and the electromagnetic mode. Recently, the attractive level crossing has been observed, and it is explained by a non-Hermitian model Hamiltonian. However, the mechanism of such attractive coupling is still unclear. We reveal the secret by using a simple model with two harmonic oscillators coupled to a third oscillator with large dissipation. We further identify this dissipative third party as the invisible cavity mode with large leakage in cavity-magnon experiments. This understanding enables one to design dissipative coupling in all sorts of coupled systems.
Original language | English |
---|---|
Article number | 227201 |
Journal | Physical Review Letters |
Volume | 123 |
Issue number | 22 |
DOIs | |
Publication status | Published - 26 Nov 2019 |
Access to Document
Fingerprint
Dive into the research topics of 'Prediction of attractive level crossing via a dissipative mode'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review Letters, Vol. 123, No. 22, 227201, 26.11.2019.
Research output: Contribution to journal › Article › Academic › peer-review
TY - JOUR
T1 - Prediction of attractive level crossing via a dissipative mode
AU - Yu, Weichao
AU - Wang, Jiongjie
AU - Yuan, H. Y.
AU - Xiao, Jiang
N1 - Funding Information: The level attraction via a dissipative mode is a general physical principle, which can be applied to a wide range of coupled physical systems. For example, either the oscillator or the dissipative third party can be a superconducting qubit [6,29] , a dielectric nanostructure [30] , an antiferromagnet [31,32] , a high-order spin wave mode [33] , or another excitation such as a phonon [34] . It has been reported recently that magnetic textures can also be coupled with the cavity photons [35,36] . Based on the understanding of dissipative coupling, the nonlinear effect [37,38] and topological properties of the exceptional point [39–42] can be generalized, and new physics is expected. In conclusion, we found that the mechanism for the dissipative coupling in many physical systems can be captured by an effective three-oscillator model, where two oscillators of interests are coupled to a common third oscillator with strong dissipation. We verify this model in both classical and quantum setups. Based on this model, we are able to explain the exact physical mechanisms behind the level-attraction experiments carried out in cavity-magnon systems, where a hidden cavity mode with large dissipation is responsible for mediating the dissipative coupling. This work was supported by the National Natural Science Foundation of China (Grants No. 11722430, No. 11847202, and No. 61704071). W. Y. is also supported by the China Postdoctoral Science Foundation under Grant No. 2018M641906. J. X. is also supported by the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission. [1] 1 C. Kittel , Phys. Rev. 73 , 155 ( 1948 ). PHRVAO 0031-899X 10.1103/PhysRev.73.155 [2] 2 Ö. O. Soykal and M. E. Flatté , Phys. Rev. Lett. 104 , 077202 ( 2010 ). PRLTAO 0031-9007 10.1103/PhysRevLett.104.077202 [3] 3 H. Huebl , C. W. Zollitsch , J. Lotze , F. Hocke , M. Greifenstein , A. Marx , R. Gross , and S. T. B. Goennenwein , Phys. Rev. Lett. 111 , 127003 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.127003 [4] 4 X. Zhang , C.-L. Zou , L. Jiang , and H. X. Tang , Phys. Rev. Lett. 113 , 156401 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.156401 [5] 5 Y. Tabuchi , S. Ishino , T. Ishikawa , R. Yamazaki , K. Usami , and Y. Nakamura , Phys. Rev. Lett. 113 , 083603 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.083603 [6] 6 D. Lachance-Quirion , Y. Tabuchi , S. Ishino , A. Noguchi , T. Ishikawa , R. Yamazaki , and Y. Nakamura , Sci. Adv. 3 , e1603150 ( 2017 ). SACDAF 2375-2548 10.1126/sciadv.1603150 [7] 7 Y. Tabuchi , S. Ishino , A. Noguchi , T. Ishikawa , R. Yamazaki , K. Usami , and Y. Nakamura , C.R. Phys. 17 , 729 ( 2016 ). CRPOBN 1631-0705 10.1016/j.crhy.2016.07.009 [8] 8 R. Hisatomi , A. Osada , Y. Tabuchi , T. Ishikawa , A. Noguchi , R. Yamazaki , K. Usami , and Y. Nakamura , Phys. Rev. B 93 , 174427 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.174427 [9] 9 L. Bai , M. Harder , Y. P. Chen , X. Fan , J. Q. Xiao , and C.-M. Hu , Phys. Rev. Lett. 114 , 227201 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.114.227201 [10] 10 L. Bai , M. Harder , P. Hyde , Z. Zhang , C.-M. Hu , Y. P. Chen , and J. Q. Xiao , Phys. Rev. Lett. 118 , 217201 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.217201 [11] 11 N. J. Lambert , J. A. Haigh , S. Langenfeld , A. C. Doherty , and A. J. Ferguson , Phys. Rev. A 93 , 021803(R) ( 2016 ). PLRAAN 2469-9926 10.1103/PhysRevA.93.021803 [12] 12 X. Zhang , C.-L. Zou , N. Zhu , F. Marquardt , L. Jiang , and H. X. Tang , Nat. Commun. 6 , 8914 ( 2015 ). NCAOBW 2041-1723 10.1038/ncomms9914 [13] 13 Y. Xiao , X. H. Yan , Y. Zhang , V. L. Grigoryan , C. M. Hu , H. Guo , and K. Xia , Phys. Rev. B 99 , 094407 ( 2019 ). PRBMDO 2469-9950 10.1103/PhysRevB.99.094407 [14] 14 B. Zare Rameshti and G. E. W. Bauer , Phys. Rev. B 97 , 014419 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.97.014419 [15] 15 V. L. Grigoryan , K. Shen , and K. Xia , Phys. Rev. B 98 , 024406 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.98.024406 [16] 16 I. Boventer , C. Dörflinger , T. Wolz , R. Macêdo , R. Lebrun , M. Kläui , and M. Weides , arXiv:1904.00393 . [17] 17 M. Harder , Y. Yang , B. M. Yao , C. H. Yu , J. W. Rao , Y. S. Gui , R. L. Stamps , and C.-M. Hu , Phys. Rev. Lett. 121 , 137203 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.121.137203 [18] 18 B. Bhoi , B. Kim , S.-H. Jang , J. Kim , J. Yang , Y.-J. Cho , and S.-K. Kim , Phys. Rev. B 99 , 134426 ( 2019 ). PRBMDO 2469-9950 10.1103/PhysRevB.99.134426 [19] 19 Y. Yang , J. W. Rao , Y. S. Gui , B. M. Yao , W. Lu , and C.-M. Hu , Phys. Rev. Applied 11 , 054023 ( 2019 ). PRAHB2 2331-7019 10.1103/PhysRevApplied.11.054023 [20] 20 B. Yao , T. Yu , X. Zhang , W. Lu , Y. Gui , C.-M. Hu , and Y. M. Blanter , arXiv:1906.12142 . [21] 21 M. Bennett , M. F. Schatz , H. Rockwood , and K. Wiesenfeld , Proc. R. Soc. A 458 , 563 ( 2002 ). PRLAAZ 1364-5021 10.1098/rspa.2001.0888 [22] 22 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.123.227201 for derivation of the effective Hamiltonian, details of numerical method and input-output formalism for the three-mode quantum model. [23] 23 B. Heinrich , Y. Tserkovnyak , G. Woltersdorf , A. Brataas , R. Urban , and G. E. W. Bauer , Phys. Rev. Lett. 90 , 187601 ( 2003 ). PRLTAO 0031-9007 10.1103/PhysRevLett.90.187601 [24] 24 H. Y. Yuan , Q. Liu , K. Xia , Z. Yuan , and X. R. Wang , Europhys. Lett. 126 , 67006 ( 2019 ). EULEEJ 0295-5075 10.1209/0295-5075/126/67006 [25] Another condition for the negligible left-hand side of Eq. (2b) is to let L 0 → 0 and C 0 → ∞ so that γ 0 I ˙ 0 dominates Eq. (2b) . [26] 26 J. R. Schrieffer and P. A. Wolff , Phys. Rev. 149 , 491 ( 1966 ). PHRVAO 0031-899X 10.1103/PhysRev.149.491 [27] 27 D. F. Walls and G. J. Milburn , Quantum Optics ( Springer Science+Business Media , New York, 2007 ). [28] 28 Computer code comsol m ultiphysics,® version 5.4, http://www.comsol.com . [29] 29 Y. Tabuchi , S. Ishino , A. Noguchi , T. Ishikawa , R. Yamazaki , K. Usami , and Y. Nakamura , Science 349 , 405 ( 2015 ). SCIEAS 0036-8075 10.1126/science.aaa3693 [30] 30 T. C. Preston and R. Signorell , Proc. Natl. Acad. Sci. U.S.A. 108 , 5532 ( 2011 ). PNASA6 0027-8424 10.1073/pnas.1100170108 [31] 31 O. Johansen and A. Brataas , Phys. Rev. Lett. 121 , 087204 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.121.087204 [32] 32 H. Y. Yuan and X. R. Wang , Appl. Phys. Lett. 110 , 082403 ( 2017 ). APPLAB 0003-6951 10.1063/1.4977083 [33] 33 Y. Cao , P. Yan , H. Huebl , S. T. B. Goennenwein , and G. E. W. Bauer , Phys. Rev. B 91 , 094423 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.094423 [34] 34 X. Zhang , C.-L. Zou , L. Jiang , and H. X. Tang , Sci. Adv. 2 , e1501286 ( 2016 ). SACDAF 2375-2548 10.1126/sciadv.1501286 [35] 35 I. Proskurin , A. S. Ovchinnikov , J.-I. Kishine , and R. L. Stamps , Phys. Rev. B 98 , 220411(R) ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.98.220411 [36] 36 L. V. Abdurakhimov , S. Khan , N. A. Panjwani , J. D. Breeze , M. Mochizuki , S. Seki , Y. Tokura , J. J. L. Morton , and H. Kurebayashi , Phys. Rev. B 99 , 140401(R) ( 2019 ). PRBMDO 2469-9950 10.1103/PhysRevB.99.140401 [37] 37 Y.-P. Wang , G.-Q. Zhang , D. Zhang , X.-Q. Luo , W. Xiong , S.-P. Wang , T.-F. Li , C.-M. Hu , and J. Q. You , Phys. Rev. B 94 , 224410 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.224410 [38] 38 Y.-P. Wang , G.-Q. Zhang , D. Zhang , T.-F. Li , C.-M. Hu , and J. Q. You , Phys. Rev. Lett. 120 , 057202 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.057202 [39] 39 M. Harder , L. Bai , P. Hyde , and C.-M. Hu , Phys. Rev. B 95 , 214411 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.214411 [40] 40 D. Zhang , X.-Q. Luo , Y.-P. Wang , T.-F. Li , and J. Q. You , Nat. Commun. 8 , 1368 ( 2017 ). NCAOBW 2041-1723 10.1038/s41467-017-01634-w [41] 41 G.-Q. Zhang and J. Q. You , Phys. Rev. B 99 , 054404 ( 2019 ). PRBMDO 2469-9950 10.1103/PhysRevB.99.054404 [42] 42 Y. Cao and P. Yan , Phys. Rev. B 99 , 214415 ( 2019 ). PRBMDO 2469-9950 10.1103/PhysRevB.99.214415 Publisher Copyright: © 2019 American Physical Society. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/11/26
Y1 - 2019/11/26
N2 - The new field of spin cavitronics focuses on the interaction between the magnon excitation of a magnetic element and the electromagnetic wave in a microwave cavity. In the strong interaction regime, such an interaction usually gives rise to the level anticrossing for the magnonic and the electromagnetic mode. Recently, the attractive level crossing has been observed, and it is explained by a non-Hermitian model Hamiltonian. However, the mechanism of such attractive coupling is still unclear. We reveal the secret by using a simple model with two harmonic oscillators coupled to a third oscillator with large dissipation. We further identify this dissipative third party as the invisible cavity mode with large leakage in cavity-magnon experiments. This understanding enables one to design dissipative coupling in all sorts of coupled systems.
AB - The new field of spin cavitronics focuses on the interaction between the magnon excitation of a magnetic element and the electromagnetic wave in a microwave cavity. In the strong interaction regime, such an interaction usually gives rise to the level anticrossing for the magnonic and the electromagnetic mode. Recently, the attractive level crossing has been observed, and it is explained by a non-Hermitian model Hamiltonian. However, the mechanism of such attractive coupling is still unclear. We reveal the secret by using a simple model with two harmonic oscillators coupled to a third oscillator with large dissipation. We further identify this dissipative third party as the invisible cavity mode with large leakage in cavity-magnon experiments. This understanding enables one to design dissipative coupling in all sorts of coupled systems.
UR - http://www.scopus.com/inward/record.url?scp=85076283146&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.123.227201
DO - 10.1103/PhysRevLett.123.227201
M3 - Article
C2 - 31868418
AN - SCOPUS:85076283146
SN - 0031-9007
VL - 123
JO - Physical Review Letters
JF - Physical Review Letters
IS - 22
M1 - 227201
ER -